tính f(x)+g(x)+h(x) với
f(x) = 6x7 - 5x3 + 1
g(x) = x.(-4x6 + 2) - 3
h(x) = x2.(-2x5 + x4 - x3) + 7x2
Bài 1: Cho f(x) = 6x7 - 5x3 + 1
g(x) = -3 + 2x - 4x7
h(x) = -2x7 + 2x + 7x2
a) Tính f(x) + g(x) + h(x).
b) Tính f(x) + g(x) - h(x).
a) \(f\left(x\right)+g\left(x\right)+h\left(x\right)\)
\(=6x^7-5x^3+1-3+2x-4x^7-2x^7+2x+7x^2\)
\(=-5x^3+7x^2+4x-2\)
b) \(f\left(x\right)+g\left(x\right)-h\left(x\right)\)
\(=6x^7-5x^3+1-3+2x-4x^7-\left(-2x^7+2x+7x^2\right)\)
\(=2x^7-5x^3+2x-2+2x^7-2x-7x^2\)
\(=4x^7-5x^3-7x^2-2\)
Cho
f ( x ) = x 2 + 2 x 3 - 7 x 5 - 9 - 6 x 7 + x 3 + x 2 + x 5 - 4 x 2 + 3 x 7 g ( x ) = x 5 + 2 x 3 - 5 x 8 - x 7 + x 3 + 4 x 2 - 5 x 7 + x 4 - 4 x 2 - x 6 - 12 h ( x ) = x + 4 x 5 - 5 x 6 - x 7 + 4 x 3 + x 2 - 2 x 7 + x 6 - 4 x 2 - 7 x 7 + x
Tính f(x) + g(x) – h(x)
tìm x
a 5x3-7x2-15x+21=0
b (x-3)2=4x2-20x+25
c x+x2-x3-x4=0
d 2x3+3x2+2x+3=0
b: 4x^2-20x+25=(x-3)^2
=>(2x-5)^2=(x-3)^2
=>(2x-5)^2-(x-3)^2=0
=>(2x-5-x+3)(2x-5+x-3)=0
=>(3x-8)(x-2)=0
=>x=8/3 hoặc x=2
c: x+x^2-x^3-x^4=0
=>x(x+1)-x^3(x+1)=0
=>(x+1)(x-x^3)=0
=>(x^3-x)(x+1)=0
=>x(x-1)(x+1)^2=0
=>\(x\in\left\{0;1;-1\right\}\)
d: 2x^3+3x^2+2x+3=0
=>x^2(2x+3)+(2x+3)=0
=>(2x+3)(x^2+1)=0
=>2x+3=0
=>x=-3/2
a: =>x^2(5x-7)-3(5x-7)=0
=>(5x-7)(x^2-3)=0
=>\(x\in\left\{\dfrac{7}{5};\sqrt{3};-\sqrt{3}\right\}\)
giúp mik lm câu này vs ạ
f(x) = x4 – 3x2 + x – 1
g(x) = x4 – x3 + x2 + 5
a) f(x)+g(x)
b)f(x)-g(x)
a) f(x)+g(x) = 2x4 -x3 -2x2+x+4
b) f(x)-g(x) =x3-4x2+x-5
Giải thích các bước giải:
a) f(x)+g(x)=x4x4 – 3x23x2 + x – 1 + x4x4 - x3x3 + x2x2 + 5
=2x42x4 - x3x3 -2x22x2 +x +4
b)f(x)-g(x)=x4x4 – 3x23x2 + x – 1 - x4x4 + x3x3 - x2x2 - 5
= x3x3 - 4x24x2 +x -6
Bài 1: Phân tích các đa thức sau thành nhân tử
a)x2-y2-2x+2y e)x4+4y4
b)x2(x-1)+16(1-x) f)x4-13x2+36
c)x2+4x-y2+4 g) (x2+x)2+4x2+4x-12
d)x3-3x2-3x+1 h)x6+2x5+x4-2x3-2x2+1
a.
$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$
b.
$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$
c.
$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$
d.
$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$
$=(x+1)(x^2-4x+1)$
e.
$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$
$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$
f.
$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$
$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$
g.
$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$
$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$
$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$
$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$
h.
$x^6+2x^5+x^4-2x^3-2x^2+1$
$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$
$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$
Cho hai đa thức
f ( x ) = - 2 x 2 - 3 x 3 - 5 x + 5 x 3 - x + x 2 + 4 x + 3 + 4 x 2 , g ( x ) = 2 x 2 - x 3 + 3 x + 3 x 3 + x 2 - x - 9 x + 2
b. Tính h(x) = f(x) - g(x), g(x) = f(x) + g(x)
b. h(x) = (2x3 + 3x2 - 2x + 3) - (2x3 + 3x2 - 7x + 2)
= 2x3 + 3x2 - 2x + 3 - 2x3 - 3x2 + 7x - 2
= 5x + 1 (0.5 điểm)
g(x) = (2x3 + 3x2 - 2x + 3) + (2x3 + 3x2 - 7x + 2)
= 2x3 + 3x2 - 2x + 3 + 2x3 + 3x2 - 7x + 2
= 4x3 + 6x2 - 9x + 5 (0.5 điểm)
giải phương trình sau:
a. (9x2-4)(x+1) = (3x+2) (x2-1)
b. (x-1)2-1+x2 = (1-x)(x+3)
c. (x2-1)(x+2)(x-3) = (x-1)(x2-4)(x+5)
d. x4+x3+x+1=0
e. x3-7x+6 = 0
f. x4-4x3+12x-9 = 0
g. x5-5x3+4x = 0
h. x4-4x3+3x2+4x-4 = 0
m.n jup vs
cho f(x) 2x4+5x3-x+8
g(x)=x4-x2-3x+9
tìm h(x) sao cho
a)f(x)-h(x)=g(x)
b)h(x)-g(x)=f(x)
a \(f\left(x\right)-h\left(x\right)=g\left(x\right)\)
\(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(h\left(x\right)=\left(2x^4+5x^3-x+8\right)-\left(x^4-x^2-3x+9\right)\)
\(h\left(x\right)=2x^4+5x^3-x+8-x^4+x^2+3x-9\)
\(h\left(x\right)=3x^4+5x^3+x^2+2x-1\)
b \(h\left(x\right)-g\left(x\right)=f\left(x\right)\)
\(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(h\left(x\right)=2x^4+5x^3-x+8+x^4-x^2-3x+9\)
\(h\left(x\right)=3x^4+5x^3-x^2-4x+17\)
Cho các hàm số f(x)= 4/x; g(x)= -3/x; h(x0= x^2; k(x)= x^3
a. Tính f(-1); g(1/2); h(a); k(2a)
b, Tính f(-2)+g(3)+h(0)
c, Tính x1; x2; x3; x4 biết rằng f(x1)=1/'2; g(x2)=3; h(x3)=9; k(x4)=-8
d, Chúng minh rằng f(-x)=-f(x). Tìm các hhamf số có tính chất tương tự.
Bài 3 : (2 điểm) Cho hai đa thức : A(x) = 2 x3 + 5 + x2 –3 x –5x3 –4
B(x) = –3x4 – x3 + 2x2 + 2x + x4 – 4–x2 .
a) Thu gọn 2 đa thức trên.
b) Tính H(x) = A(x) – B(x)
a) A(x) = 2x3 + 5 + x2 - 3x - 5x3 - 4
= 2x3 - 5x3 + x2 - 3x + 5 - 4
= -3x3 + x2 - 3x + 1
B(x) = -3x4 - x3 + 2x2 + 2x + x4 - 4 - x2
= -3x4 + x4 - x3 + 2x2 - x2 + 2x - 4
= -2x4 - x3 + x2 + 2x - 4
b)
H(x) = A(x) - B(x)
H(x) = (-3x3 + x2 - 3x + 1) - (-2x4 - x3 + x2 + 2x - 4)
= -3x3 + x2 - 3x + 1 + 2x4 + x3 - x2 - 2x + 4
= 2x4 - 3x3 + x3 + x2 - x2 - 3x - 2x + 1 + 4
= 2x4 - 2x3 -5x + 5
a) A(x)=(2x3-5x3) +(5-4) + x2- 3x
=-3x3+1+x2-3x
B(x)=(-3x4+x4) - x3+(2x2-x2) +2x - 4
=-2x4-x3+x2+2x - 4
b) A(x) - B(x) = (-3x3+1+x2-3x) - (-2x4-x3+x2+2x - 4)
= -3x3+1+x2-3x - 2x4+x3-x2-2x + 4
=(-3x3+x3) + (1+4) + (+x2-x2) + (-3x-2x) - 2x4
=-2x3 + 5 - 5x -2x4