Cho \(A=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x-1\)
Tính A tại x = 2018
Cho x=2017.Tính giá tri của biểu thức :
\(B=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...-2019x^2+2019x-1\)
cho đa thức E(x)=\(x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x+1\). Tính E(2018)
\(E\left(x\right)=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x+1\)
Vì \(E\left(2018\right)\) nên :
\(\Rightarrow E\left(x\right)=2018^{2018}-2019.2018^{2017}+2019.2018^{2016}-2019.2018^{2015}+...+2019.2018^2-2019.2018+1\)
Tới đoạn này thì ghi dấu "=" rồi tính và làm tương tự
Lời giải
Ta có:
\(E(x)=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x+1\)
\(E(x)=(x^{2018}-2018x^{2017})-(x^{2017}-2018x^{2016})+(x^{2016}-2018x^{2015})-....+(x^2-2018x)-x+1\)
\(E(x)=x^{2017}(x-2018)-x^{2016}(x-2018)+x^{2015}(x-8)-...+x(x-2018)-x+1\)
\(E(x)=(x-2018)(x^{2017}-x^{2016}+x^{2015}-...+x)-x+1\)
Suy ra \(E(2018)=-2018+1=-2017\)
1 bài toán lớp 7 hay
cho x =2018 tính giá trị của biểu thức:
\(x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x+1\)
Vào Tkhđ của mik xem có ảnh ko nhé !
https://m.imgur.com/a/o7Vo0kL
CHịu khó gõ link.onl đt bèn làm ntnày thôi nha
Ảnh trên không hiện rồi nhé !
N(x)= \(^{^{x^{2018}}-2019x^{2017}+2019x^{2016}+...+2019x^2+2019x+2018}\)
tính N(2018)
tính giá trị f(x)=x^6-2019x^5+2019x^4-2019x^3+2019x^2-2019x+1 tại x=2018
Ta có: x = 2018 \(\Rightarrow x+1=2019\).
\(f\left(x\right)=x^6-2019x^5+2019x^4-...-2019+1\)
\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+1\)
\(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+1\)
\(=-x-1=-2018-1=-2019\)
Cho x= 2019. Tính giá trị của biểu thức:
E = x^2019 - 2019x^2018 + 2019x^2017 - ....-2019x^2 +2019x-1
Giúp mik nhanh với, cảm ơn nhek
Ta có: x=2018
nên x+1=2019
Ta có: \(A=x^5-2019x^4+2019x^3-2019x^2+2019x-2020\)
\(=x^5-x^4\left(x+1\right)+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-2020\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2020\)
\(=x-2020=2019-2020=-1\)
cho A(x) = \(x^{21}-2019x^{20}+2019x^{19}-......-2019x^2+2019x-1\). Tính giá trị của A tại (x) = 2018
Cho P=\(x^{2016}-2019x^{2015}+2019x^{2014}-....-2019x+2020\)
Tính giá trị của P khi x = 2018
Khi x=2018 thì
P=\(2018^{2016}-2019.2018^{2015}+2019.2018^{2014}-...-2019.2018+2020\)
=\(2018^{2016}-\left(2018+1\right).2018^{2015}+\left(2018+1\right)\\ .2018^{2014}-...-\left(2018+1\right)2018+2020\)
=\(2018^{2016}-2018^{2016}-2018^{2015}+2018^{2015}+\\ 2018^{2014}-...-2018^2-2018+2020\)
=2