Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Huy Hoàng
Xem chi tiết
Trần Quốc Thắng
9 tháng 4 2021 lúc 20:13

ĐỊT MẸ

Khách vãng lai đã xóa
An Nhiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 5 2020 lúc 21:08

a) Ta có: \(A=\sqrt{3+2\sqrt{2}}-\frac{1}{1+\sqrt{2}}\)

\(=\sqrt{1+2\cdot1\cdot\sqrt{2}+2}-\frac{1}{1+\sqrt{2}}\)

\(=\sqrt{\left(1+\sqrt{2}\right)^2}-\frac{1}{1+\sqrt{2}}\)

\(=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}\)

\(=\frac{\left(1+\sqrt{2}\right)^2}{1+\sqrt{2}}-\frac{1}{1+\sqrt{2}}\)

\(=\frac{1+2\sqrt{2}+2-1}{1+\sqrt{2}}\)

\(=\frac{2\sqrt{2}+2}{1+\sqrt{2}}\)

\(=\frac{2\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=2\)

b) Ta có: \(\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{3}{\sqrt{x}-3}\right)\cdot\frac{\sqrt{x}+3}{x+9}\)

\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right)\cdot\frac{1}{\sqrt{x}-3}\)

\(=\frac{x-3\sqrt{x}+3\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{1}{\sqrt{x}-3}\)

\(=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{1}{\sqrt{x}-3}\)

\(=\frac{1}{\sqrt{x}-3}\)(đpcm)

Lê Minh Đức
Xem chi tiết
alibaba nguyễn
11 tháng 7 2017 lúc 14:04

Làm biếng nghĩ quá. Chơi cách này cho mau vậy.

\(\frac{x}{\sqrt{1-x^2}}+\frac{y}{\sqrt{1-y^2}}\ge\frac{2}{\sqrt{3}}\)

\(\Leftrightarrow\frac{x}{\sqrt{3\left(1-x\right)\left(1+x\right)}}+\frac{y}{\sqrt{3\left(1-y\right)\left(1+y\right)}}\ge\frac{2}{3}\)

\(\Leftrightarrow\frac{x}{2-x}+\frac{y}{2-y}\ge\frac{2}{3}\)

\(\Leftrightarrow\frac{1-y}{1+y}+\frac{y}{2-y}\ge\frac{2}{3}\)

\(\Leftrightarrow4y^2-4y+1\ge0\)

\(\Leftrightarrow\left(2y-1\right)^2\ge0\left(đung\right)\)

tth_new
Xem chi tiết
Lê Nhật Khôi
4 tháng 9 2019 lúc 14:58

Pt tương đương:

\(2\sqrt{3\left(x^2+y^2+z^2\right)}\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}+3\)

Có: \(\sqrt{3\left(x^2+y^2+z^2\right)}\ge\sqrt{3\cdot3\left(xyz\right)^2}=3\)

Đồng thời:

\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=x+y+z\le\sqrt{\left(x+y+z\right)^2}\le\sqrt{3\left(x^2+y^2+z^2\right)}\)

Rồi cộng lại 

fghj
Xem chi tiết
Nguyễn Hương
Xem chi tiết
Võ Hồng Phúc
10 tháng 10 2019 lúc 19:21

a, \(\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)

\(=\frac{2+\sqrt{3}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{2-\sqrt{3}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\frac{2+\sqrt{3}}{2+\sqrt{3}+1}+\frac{2-\sqrt{3}}{2-\sqrt{3}+1}\)

\(=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\)

\(=\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)

\(=\frac{6+\sqrt{3}-3+6-\sqrt{3}-3}{9-3}=\frac{6}{6}=1\)

b, \(\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x-1}\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}-1+2x-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)}=\frac{2}{\sqrt{x}}\)

Nguyễn Minh Toàn
Xem chi tiết
Thanh Tùng DZ
21 tháng 5 2019 lúc 17:22

nhìn số 82 = 92 + 1 mà nghĩ ra p2

Thanh Tùng DZ
21 tháng 5 2019 lúc 17:29

Ta có :

\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)

tương tự : \(\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}.\left(y+\frac{9}{z}\right)\); \(\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}.\left(z+\frac{9}{x}\right)\)

\(\Rightarrow\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)

\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)

tth_new
22 tháng 5 2019 lúc 8:21

Chơi thêm một phát nữa cho phức tạp :D. Cách này em làm chơi thôi á! Dài dòng lắm!

Ta chứng minh BĐT phụ (hay còn gọi là Mincopxki): \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\) với a,b,c,d thuộc R.

Bình phương hai vế và khai triển ra hết:,ta có:\(BĐT\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+b^2+c^2+d^2+2ac+2bd\)

\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2\left(ac+bd\right)\)

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(ac+bd\right)\)

Bình phương hai vế, BĐT tương đương với:

\(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\). Nhân tung hết mấy cái ngoặc ra,ta cần c/m:

\(a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)

\(\Leftrightarrow a^2d^2+b^2c^2\ge2.ad.bc\Leftrightarrow\left(ad-bc\right)^2\ge0\) (BĐT đúng)

Dấu "=" xảy ra khi \(ad=bc\).

Áp dụng BĐT trên hai lần,ta có:

\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(\ge\sqrt{81\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}-80\left(x+y+z\right)^2}\)

\(\ge\sqrt{2\sqrt{81\left(x+y+z\right)^2.\frac{81}{\left(x+y+z\right)^2}}-80.1^2}\) (Cô si hay AM-GM các kiểu -__-")

\(=\sqrt{2.81-80}=\sqrt{82}\left(Q.E.D\right)\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) (anh/chị giải rõ ra nha :( máy em bị lag rồi)

Orochimaru
Xem chi tiết
Pythagoras
26 tháng 2 2022 lúc 8:19

\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)

\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(y+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)

\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)

\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)

Khách vãng lai đã xóa
Lê Trường Lân
Xem chi tiết
bach nhac lam
31 tháng 7 2020 lúc 17:43

bài 2 tham khảo câu V đề thi vòng 1 trường THPT chuyên đại học sư phạm năm học 2013-2014