Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Ngọc Hân
3 tháng 10 2017 lúc 14:09

Bạn tham khảo ở đây nha!

Tìm GTNN của - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán

kiêu ngọc minh
Xem chi tiết
Nguyen Tran Mai Phuong
Xem chi tiết
Nam Tran Ngoc Nam
Xem chi tiết
Nhật Minh
22 tháng 6 2016 lúc 2:00

\(A=x-2\sqrt{x}\left(\sqrt{y}+1\right)+\left(\sqrt{y}+1\right)^2+\left(3y+1-\left(\sqrt{y}+1\right)^2\right)\)

 \(=\left(\sqrt{x}-\sqrt{y}-1\right)^2+2\left(y-\sqrt{y}+\frac{1}{4}\right)-\frac{1}{2}\)

\(=\left(\sqrt{x}-\sqrt{y}-1\right)^2+2\left(\sqrt{y}-\frac{1}{2}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)

Amin= -1/2  khi  y=1/4; x=9/4

Nguyen Phu Tho
Xem chi tiết
Law Trafargal
Xem chi tiết
Phạm Minh Quang
10 tháng 10 2019 lúc 0:35

\(4B=4x^2+4xy+4y^2-8x-12y+8076\)

= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)

\(+\left(2x\right)^2-8x+8076\)

= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)

đến đây thì dễ rồi

Phạm văn đạt
Xem chi tiết
Phạm Thị Tâm Tâm
3 tháng 8 2015 lúc 20:16

i love U không giải đâu ,đừng có ****,bạn ấy luôn đi xin **** người khác mà không thèm giải bài nào

salamander
Xem chi tiết
Girl
8 tháng 4 2019 lúc 16:54

Áp dụng bđt AM-GM:

\(2x^2+\frac{6}{x^2}+3y^2+\frac{8}{y^2}\)

\(=\left(2x^2+\frac{2}{x^2}\right)+\left(3y^2+\frac{3}{y^2}\right)+\left(\frac{4}{x^2}+\frac{5}{y^2}\right)\)

\(\ge2\sqrt{\frac{4x^2}{x^2}}+2\sqrt{\frac{9y^2}{y^2}}+\left(\frac{4}{x^2}+\frac{5}{y^2}\right)\ge4+6+9=19\)

\("="\Leftrightarrow x=y=\pm1\)

daomanh tung
Xem chi tiết
Trần Minh Hoàng
9 tháng 10 2018 lúc 17:21

Ta có:

A = x 

daomanh tung
9 tháng 10 2018 lúc 17:23

A=x ma la lm jup ha tu dung A=x bo tay

lý canh hy
9 tháng 10 2018 lúc 17:37

\(A=x-2\sqrt{xy}+3y-2\sqrt{x}+1\)

\(=x-2\sqrt{x}\left(\sqrt{y}+1\right)+\left(\sqrt{y}+1\right)^2+2\left(y-\sqrt{y}+\frac{1}{4}\right)-\frac{3}{2}\)

\(=\left(\sqrt{x}-\sqrt{y}-1\right)^2+2\left(\sqrt{y}-\frac{1}{2}\right)^2-\frac{3}{2}\ge-\frac{3}{2}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x}-\sqrt{y}-1=0\\\sqrt{y}-\frac{1}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{1}{4}\end{cases}}\)