cho x, y >0 . cmr (2x^2+3y^2)/(2x^3+3y^3)+(2y^2+3x^2)/(2y^3+3x^3)<=4/x+y
Cho x,y khác 0.
CMR : \(\frac{2x^2+3y^2}{2x^3+3y^3}+\frac{3x^2+2y^2}{3x^3+2y^3}\le\frac{4}{x+y}\)
Đề kì vậy bạn. Sao vế trái không có \(y\) vậy?
1) 8y^2-25=3xy+5x
2)xy-2y-3=3x-x^2
3)x^2+2y^2-3xy_4x-3y-26=0
4)x^2+3y^2+2xy-2x-4y-3=0
5)x^3+3x=y^3
6)x^4-2x^2y+7y^2=55
7)x^2y^2-2xy=x^2+16y^2
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
a) \(2x^2+3y>0\)
b) 2x + \(3y^2\le0\)
c) 2x + 3y > 0
d) \(2x^2-y^2+3x-2y< 0\)
e) 3y < 1
f) x - 2y \(\le1\)
g) x \(\le0\)
h) y > 0
i) 4(x-1) + 5(y-3) > 2x - 9
Bất phương trình bậc nhất 2 ẩn :
\(2x+3y>0\Rightarrow Câu\) \(C\)
\(x-2y\le1\Rightarrow Câu\) \(f\)
\(4\left(x-1\right)+5\left(y-3\right)>2x-9\)
\(\Leftrightarrow4x-4+5y-15-2x+9>0\)
\(\Leftrightarrow2x+5y-10>0\) \(\Rightarrow Câu\) \(i\)
C=3x^2y-2xy^2+x^3y^3+3xy^2-2^2y-2x^3y^3
D=15x^2y^3+7y^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3
E=3x^5+1/3xy^4+3/4x^2y^3-1/2x^5y+2xy^4-x^2y^3
tìm bậc
BÀI 9: TÍNH GIÁ TRỊ BIỂU THỨC
a) 2/3x^2y + 3x^2y + x^2y tại x=3 y=7
b) 1/2xy^2 + 1/3xy^2 + 1/6xy^2 tại x=3/4 y= -1/2
c) 2x^3y^3 + 10x^3y^3 - 20x^3y^3 tại x =1 y= -1
d) 2018xy^2 + 16xy^2 - 2016xy^2 tại x= -2 y= -1/3
a: A=2/3x^2y+4x^2y=14/3x^2y
=14/3*9*7=294
b: B=xy^2(1/2+1/3+1/6)=xy^2=3/4*1/4=3/16
c: C=x^3y^3(2+10-20)=-8x^3y^3
=-8*1^3(-1)^3=8
d: D=xy^2(2018+16-2016)
=18xy^2
=18(-2)*1/9=-4
Làm tính chia
a, ( x + y )^2 : (x+y)
b, ( x- y )^5 : ( y - x )^4
c, (5x^4 - 3x^3 + x^2 ) : 3x^2
d, ( x^3y^3 - 1/2x^2y^3 x^3y^2 ) : 1/2x^2y^2
a)\(\left(x+y\right)^2:\left(x+y\right)=x+y\)
b)\(\left(x-y\right)^5:\left(y-x\right)^4=\left(x-y\right)^5:\left(x-y\right)^4=x-y\)
c)\(\left(5x^4-3x^3+x^2\right):3x^2=\frac{5}{3}x^2-x+\frac{1}{3}^{ }\)
d)\(\left(x^3y^3-\frac{1}{2}x^2y^3+x^3y^2\right):\frac{1}{2}x^2y^2=2xy-y+x\)
Cho \(x+y=1\). Tính :
a) \(A=x^4-xy^3+yx^3-y^4+y^3-x^3-2\)
b) \(B=3x+3y+2x^2y+2xy^2-2xy+5x^3y^2+5x^2y^3-5x^2y^2+3\)
c) \(C=3xy\left(x+y\right)+2x^3y+2x^2y^2-2x^2y+\sqrt{16}-3xy\)