Với giá trị nào của m thì phương trình (3m^2-4)x-1=m-x có nghiệm duy nhất
cho hệ phương trình x-y+m=0 và (x+y-2)(x-2y+1) với giá trị nào của m thì hệ phương trình có một nghiệm duy nhất
Cho phương trình : m3x = 2m2x - m + 2
a, Với giá trị nào của m thì phương trình có nghiệm x = 1
b, XĐ m để phương trình có nghiệm duy nhất
Cho hệ phương trình:
\(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)
a) Tìm m để hệ phương trình có nghiệm duy nhất, vô nghiệm, vô số nghiệm
b) Với giá trị nào của m thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1
`a,x-3y=2`
`<=>x=3y+2` ta thế vào phương trình trên:
`2(3y+2)+my=-5`
`<=>6y+4+my=-5`
`<=>y(m+6)=-9`
HPT có nghiệm duy nhất:
`<=>m+6 ne 0<=>m ne -6`
HPT vô số nghiệm
`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`
HPT vô nghiệm
`<=>m+6=0,-6 ne 0<=>m ne -6`
b,HPT có nghiệm duy nhất
`<=>m ne -6`(câu a)
`=>y=-9/(m+6)`
`<=>x=3y+2`
`<=>x=(-27+2m+12)/(m+6)`
`<=>x=(-15+2m)/(m+6)`
`x+2y=1`
`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`
`<=>(2m-33)/(m+6)=1`
`2m-33=m+6`
`<=>m=39(TM)`
Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`
b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)
Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)
\(\Leftrightarrow2m-33=m+6\)
\(\Leftrightarrow2m-m=6+33\)
hay m=39
Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1
Với giá trị nào của m thì phương trình
x + 3 + 2 2 - x = m có nghiệm duy nhất ?
A. m = 5 hoặc
B.
C.
D. m = 5
Đáp án A
Bảng biến thiên
Từ bảng biến thiên suy ra phương trình đã cho có nghiệm duy nhất
Với giá trị nào của m thì phương trình x + 3 + 2 2 - x = m có nghiệm duy nhất ?
A. m = 5 hoặc 5 ≤ m ≤ 2 5
B. 5 < m < 2 5
C. 5 ≤ m ≤ 2 5
D. m = 5
Đáp án A
Bảng biến thiên
Từ bảng biến thiên suy ra phương trình đã cho có nghiệm duy nhất
(m2 - 3m + 2)x = m - 4
Tìm giá trị nguyên của m để phương trình có nghiệm x nguyên duy nhất
pt : (m^2-2m+3).x = m-4
Để pt có nghiệm duy nhất thì : m^2-2m+3 khác 0
<=> (m-1).(m-2) khác 0
<=> m-1 khác 0 và m-2 khác 0
<=> m khác 1 và m khác 2
Tk mk nha
bạn ơi, phương trình (m2 - 3m + 2) bạn nhé, chứ không phải (m2 - 2m + 3) đâu. Thanks bạn vì đã trả lời giùm mình
Với giá trị nào của m thì phương trình ẩn x: x – 2 = 3m + 4 có nghiệm lớn hơn 3
x – 2 = 3m + 4
⇔x = 3m + 6
Phương trình x – 2 = 3m + 4 có nghiệm lớn hơn 3 khi và chỉ khi: 3m + 6 > 3.
Giải: 3m + 6 > 3 có m > -1
Vậy với m > -1 thì phương trình ẩn x là x – 2 = 3m + 4 có nghiệm lớn hơn 3.
Cho hệ pt: \(\left\{{}\begin{matrix}3x-y=2\\9x-my=m\end{matrix}\right.\)
1. Với giá trị nào của m thì hệ phương trình vô nghiệm
2. Với giá trị nào của m thì hệ phương trình có vô số nghiệm?
3. Với giá trị nào của m thì hệ phương trình có nghiệm duy nhất
4. Tìm m để hệ có nghiệm duy nhất x> 0; y<0