Chứng minh: \(\left(\sqrt[3]{3+2.\sqrt{2}}+\sqrt[3]{3-2.\sqrt{2}}\right)^8>3^6\)
Cần gấp.
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
\(\left(4-\sqrt{7}\right)^2=4^2-2\cdot4\cdot\sqrt{7}+7\)
\(=16-8\sqrt{7}+7=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}-\sqrt{5}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)
\(=\left|\sqrt{5}-2\right|-\sqrt{5}\)
\(=\sqrt{5}-2-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\)
\(=\dfrac{\sqrt{3-2\cdot\sqrt{3}\cdot1+1}}{\sqrt{2}+1}\cdot\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}+1}\cdot\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\)
\(=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\dfrac{3-1}{2-1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\dfrac{6\sqrt{6}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{1}{2}\sqrt{6}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{1}{2}-2=-\dfrac{3}{2}=-1,5\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}-1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
Chứng minh
\(\left(\sqrt{4}-\sqrt{3}\right)^2=\sqrt{49}-\sqrt{48}\)
\(2\sqrt{2}\left(2-3\sqrt{3}\right)+\left(1-2\sqrt{2}\right)^2+6\sqrt{6}=9\)
\(\sqrt{8-2\sqrt{15}-\sqrt{8+2\sqrt{15}}}=-2\sqrt{3}\)
+) \(\left(\sqrt{4}-\sqrt{3}\right)^2=4-2\sqrt{4\cdot3}+3=7-2\sqrt{7}=\sqrt{49}-\sqrt{48}\)
+) \(2\sqrt{2}\left(2-3\sqrt{3}\right)+\left(1-2\sqrt{2}\right)^2+6\sqrt{6}\)
\(=4\sqrt{2}-6\sqrt{6}+9-4\sqrt{2}+6\sqrt{6}\)
\(=9\)
+) Sửa : \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
\(=\sqrt{5-2\sqrt{5}\cdot\sqrt{3}+3}-\sqrt{5+2\sqrt{5}\cdot\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)
\(=-2\sqrt{3}\)
Mình đang cần gấp!!!
Chứng minh : a) \(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
b) \(\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)
a) \(\Leftrightarrow\left(\sqrt{3+\sqrt{5}}\right)^2\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
\(\Leftrightarrow\sqrt{3+\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\sqrt{\left(3-\sqrt{5}\right)\cdot\left(3+\sqrt{5}\right)}=8\)
\(\Leftrightarrow\sqrt{\frac{6+2\sqrt{5}}{2}}\cdot\left(\sqrt{5}\sqrt{2}-\sqrt{2}\right)\sqrt{3^2-5}=8\).
\(\Leftrightarrow\sqrt{\frac{5+2\sqrt{5}+1}{2}}\cdot\sqrt{2}\cdot\left(\sqrt{5}-1\right)\cdot\sqrt{4}=8\)
\(\Leftrightarrow\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}\cdot\sqrt{2}\cdot\left(\sqrt{5}-1\right)\cdot2=8\)
\(\Leftrightarrow\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=4\Leftrightarrow\left(\sqrt{5}\right)^2-1=4\Leftrightarrow5-1=4\)Đúng -ĐPCM.
Cậu giải dùm mình câu b luôn nhé! cảm ơn c! :)))))))
b) Rõ ràng: \(\sqrt{\sqrt{2}+1}>\sqrt{\sqrt{2}-1}\)
Bình phương 2 vế ta được:
\(\sqrt{2}+1-2\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\sqrt{2}-1=2\left(\sqrt{2}-1\right)\)
\(\Leftrightarrow2\sqrt{2}-2\sqrt{\left(\sqrt{2}\right)^2-1}=2\sqrt{2}-2\)
\(\Leftrightarrow2\sqrt{2}-2=2\sqrt{2}-2\)Hiển nhiên đúng. ĐPCM
chứng minh \(\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^8>3^6\)
Chứng minh :\(\left(\sqrt[3]{3+2.\sqrt{2}}+\sqrt[3]{3-2.\sqrt{2}}\right)^8>3^6\)
HFGBHGHFGHFGFGHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
a.\(\sqrt{17}-6\sqrt{2}+3+\sqrt{2 }\)
b.\(\left(3+\sqrt{ }5\right).\left(\sqrt{ }10.\sqrt{ }2\right).\sqrt{3-\sqrt{ }5}\)
c.\(\left(\sqrt{2}-3\right).\sqrt{11+6\sqrt{2}}\)
d.\(\sqrt{23+8\sqrt{7}}-\sqrt{2}\)
nhanh nha gấp lắm trcs 9h
\(a,=\sqrt{17}-5\sqrt{2}+3\\ b,=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}\\ =\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\left(\sqrt{5}-1\right)\\ =\left(3+\sqrt{5}\right)\left(6-2\sqrt{5}\right)=8\\ c,=\left(\sqrt{2}-3\right)\left(3+\sqrt{2}\right)=2-9=-7\\ d,4+\sqrt{7}-\sqrt{2}\)
Gấp lắm . Giúp mình cảm ơn ạ
Bài 1
\(2\sqrt{\left(1+\sqrt{3}\right)^{ }3}-\sqrt{\left(2\sqrt{3}-3\right)^2}\)
\(\left(1+\sqrt{3}-\sqrt{5}\right).\left(1+\sqrt{3}+\sqrt{5}\right)\)
\(\left(\sqrt[]{\dfrac{8}{3}}-\sqrt{5}\right)x\sqrt{6}\)
\(\left(5+4\sqrt{2}\right).\left(3+2\sqrt{1}+\sqrt{2}\right).\left(3-2\sqrt{1}+2\right)\)
\(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
e) Ta có: \(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{2}+1-\sqrt{2}+1\)
=2
Chứng minh \(\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^8>6\)