Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thuy le
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 12 2021 lúc 13:00

Câu 1: 

1:

a: Xét tứ giác OAMD có 

\(\widehat{OAM}+\widehat{ODM}=180^0\)

Do đó: OAMD là tứ giác nội tiếp

hello hello
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 4 2021 lúc 21:43

a) Xét tứ giác OAMC có 

\(\widehat{OAM}\) và \(\widehat{OCM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OCM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OAMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Lê Thị Tuyết
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 6 2023 lúc 22:00

a: góc OAM+góc OCM=180 độ

=>OAMC nội tiếp

b: CE//BD

=>góc AKM=góc AEC=góc ACM

=>AKCM nội tiếp

=>A,K,C,M cùng nằm trên 1 đường tròn

=>góc OKM=90 độ

=>K là trung điểm của BD

 

Minhquang Vo
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 2 2021 lúc 23:30

1) Xét (O) có

\(\widehat{ACD}\) là góc nội tiếp chắn \(\stackrel\frown{AD}\)

\(\widehat{MDA}\) là góc tạo bởi tia tiếp tuyến MD và dây cung AD

Do đó: \(\widehat{ACD}=\widehat{MDA}\)(Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)

hay \(\widehat{MCD}=\widehat{MDA}\)

Xét ΔMCD và ΔMDA có

\(\widehat{MCD}=\widehat{MDA}\)(cmt)

\(\widehat{CMD}\) chung

Do đó: ΔMCD∼ΔMDA(g-g)

\(\dfrac{MC}{MD}=\dfrac{MD}{MA}\)(Các cặp cạnh tương ứng tỉ lệ)

nên \(MD^2=MC\cdot MA\)(đpcm)

Song Eun Yong
Xem chi tiết
My Phương
Xem chi tiết
chanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 5 2022 lúc 10:39

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)

nên MAOB là tứ giác nội tiếp(1)

Xét tứ giác OHMB có \(\widehat{OHM}+\widehat{OBM}=180^0\)

nên OHMB là tứ giác nội tiếp(2)

Từ (1) và (2) suy ra O,H,A,M,B cùng thuộc đường tròn

b: Xét ΔMAC và ΔMDA có 

\(\widehat{MAC}=\widehat{MDA}\)

\(\widehat{AMC}\) chung

Do đó:ΔMAC\(\sim\)ΔMDA
Suy ra: MA/MD=MC/MA

hay \(MA^2=MD\cdot MC=MO^2-R^2\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 3 2018 lúc 1:59

Tia MB cắt đoạn thẳng AO tại điểm B nằm giữa A và O nên tia MB nằm giữa hai tia MA, MO (hay tia MB nằm giữa hai tia MA, MN).

Vì tia MB nằm giữa hai tia MA, MN nên tia MB cắt đoạn thẳng AN tại điểm C nằm giữa hai điểm A, N.

Vậy tia MB cắt tia AN tại điểm C nằm giữa A, N. 

Nguyệt Lam
Xem chi tiết
Page One
10 tháng 4 2022 lúc 21:57

a) tứ giác AOBM nội tiếp thì có tâm đường tròn là trung điểm OM

cần CM tứ giác OIMB nội tiếp: dùng tổng hai góc đối cộng với nhau bằng 180o, mà đã có OBM=90o, mà I là trung điểm dây cung CD nên OI vuông góc CD luôn => OIM=90o

Vậy tứ giác OIMB nội tiếp thì tâm đường tròn cũng tại trung điểm OM luôn

b) 5 điểm A,I,O,B,M cùng thuộc 1 đtron

=> tứ giác AIOB nội tiếp => góc AIB=AOB (cùng chắn cung)

tứ giác AIOM nội tiếp => góc AIM=AOM (ccc)

mà góc AOM=1/2AOB=AIM=1/2AIB

=> BIM=1/2AIB (đpcm

Huy Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 17:27

a) Xét (O) có 

\(\widehat{EFA}\) là góc nội tiếp chắn cung EA

\(\widehat{EBA}\) là góc nội tiếp chắn cung EA

Do đó: \(\widehat{EFA}=\widehat{EBA}\)(Hệ quả góc nội tiếp)

hay \(\widehat{MBE}=\widehat{MFA}\)

Xét ΔMBE và ΔMFA có 

\(\widehat{MBE}=\widehat{MFA}\)(cmt)

\(\widehat{AMF}\) chung

Do đó: ΔMBE∼ΔMFA(g-g)

Suy ra: \(\dfrac{MB}{MF}=\dfrac{ME}{MA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(MA\cdot MB=ME\cdot MF\)(Đpcm)