Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hải Dương
Xem chi tiết
Lightning Farron
26 tháng 1 2017 lúc 19:49

nhân lên đặt ẩn...

Lý Vũ Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 6 2023 lúc 21:40

a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0

=>-5x-4=0

=>x=-4/5

b: =>6x^2-9x+2x-3-6x^2-12x=16

=>-19x=19

=>x=-1

c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81

=>83x=83

=>x=1

Nkỏ Kô Út
Xem chi tiết
Trần Hoàng Dũng
5 tháng 11 2017 lúc 9:14

giúp mình bài ni với :3x^2(x+1)-5x(x+1)^2+4(x+1)

nguyen cong danh
Xem chi tiết
Tuấn phong
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 10 2023 lúc 21:32

a: ĐKXD: x<>0

\(\dfrac{14x^3+12x^2-14x}{2x}=\left(x+2\right)\left(3x-4\right)\)

=>\(\dfrac{2x\left(7x^2+6x-7\right)}{2x}=\left(x+2\right)\left(3x-4\right)\)

=>\(7x^2+6x-7=3x^2-4x+6x-8\)

=>\(7x^2+6x-7=3x^2+2x-8\)

=>\(4x^2+4x+1=0\)

=>\(\left(2x+1\right)^2=0\)

=>2x+1=0

=>x=-1/2(nhận)

b: \(\left(4x-5\right)\left(6x+1\right)-\left(8x+3\right)\left(3x-4\right)=15\)

=>\(24x^2+4x-30x-5-\left(24x^2-32x+9x-12\right)=15\)

=>\(24x^2-26x-5-24x^2+23x+12=15\)

=>-3x+7=15

=>-3x=8

=>\(x=-\dfrac{8}{3}\)

123456789
Xem chi tiết
Hoàng Ninh
22 tháng 8 2021 lúc 15:27

\(\left(4x+1\right)\left(12x-1\right)\left(3x-2\right)\left(x+1\right)-4\) (Sửa đề)

\(=[\left(4x+1\right)\left(3x+2\right)][\left(12x-1\right)\left(x+1\right)]-4\)

\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)

Đặt \(12x^2+11x-1=n\)

\(=\left(n+3\right)n-4\)

\(=n^2+3n-4\)

\(=n^2-n+4n-4\)

\(=n\left(n-1\right)+4\left(n-1\right)\)

\(=\left(n-1\right)\left(n+4\right)\)

\(=\left(12x^2+11x-1-1\right)\left(12x^2+11x-1+4\right)\)

\(=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)

Khách vãng lai đã xóa
Hoàng Ninh
22 tháng 8 2021 lúc 15:32

\(\left(3x+4\right)\left(x+1\right)\left(6x+7\right)^2=6\)

\(\Leftrightarrow\left(3x^2+7x+4\right)\left(36x^2+84x+49\right)=6\)(1)

Đặt \(\left(3x^2+7x+4\right)=n\)lúc đó (1):

\(\left(12n+1\right)n=6\)

\(\Rightarrow\hept{\begin{cases}n=0,75\\n=\frac{2}{3}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{-2}{3}\\x=\frac{-5}{3}\end{cases}}\)

Khách vãng lai đã xóa
TFBoys Nam Thần
Xem chi tiết
Nguyễn Trung Kiên
28 tháng 3 2016 lúc 5:10

cách 1: phân tích ra ước

cách 2 áp dụng 7 hằng đẳng thức nhân tung ra

Min
28 tháng 3 2016 lúc 5:40

viết tên nhóm TFBOYS cuh sai

Lê Phương Thảo
2 tháng 4 2016 lúc 18:19

ko f l tfboys mà là TFBOYS nhé , bn có f Tứ Diệp Thảo ko vx

Thảo
Xem chi tiết

a, 7x + 10x  = 5x 

    17x = 5x

17x - 5x = 0

      12x = 0

          x =0

2; 

a, 4x + 7x = 22

    11x = 22

        x = 2

b, 12x - 8x = 25

     4x = 25

       x = \(\dfrac{25}{4}\)

c,  \(\dfrac{1}{2}\)x - \(\dfrac{1}{3}\)x = \(\dfrac{4}{5}\) 

     (\(\dfrac{1}{2}-\dfrac{1}{3}\))x = \(\dfrac{4}{5}\)

    \(\dfrac{1}{6}\)x     = \(\dfrac{4}{5}\) 

      x = \(\dfrac{4}{5}\) : \(\dfrac{1}{6}\)

     x = \(\dfrac{24}{5}\)

Minh Bình
Xem chi tiết

a: \(x^3+8x=5x^2+4\)

=>\(x^3-5x^2+8x-4=0\)

=>\(x^3-x^2-4x^2+4x+4x-4=0\)

=>\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^2-4x+4\right)=0\)

=>\(\left(x-1\right)\left(x-2\right)^2=0\)

=>\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

2: \(x^3+3x^2=x+6\)

=>\(x^3+3x^2-x-6=0\)

=>\(x^3+2x^2+x^2+2x-3x-6=0\)

=>\(x^2\cdot\left(x+2\right)+x\left(x+2\right)-3\left(x+2\right)=0\)

=>\(\left(x+2\right)\left(x^2+x-3\right)=0\)

=>\(\left[{}\begin{matrix}x+2=0\\x^2+x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1+\sqrt{13}}{2}\\x=\dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)

3: ĐKXĐ: x>=0

\(2x+3\sqrt{x}=1\)

=>\(2x+3\sqrt{x}-1=0\)

=>\(x+\dfrac{3}{2}\sqrt{x}-\dfrac{1}{2}=0\)

=>\(\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{17}{16}=0\)

=>\(\left(\sqrt{x}+\dfrac{3}{4}\right)^2=\dfrac{17}{16}\)

=>\(\left[{}\begin{matrix}\sqrt{x}+\dfrac{3}{4}=-\dfrac{\sqrt{17}}{4}\\\sqrt{x}+\dfrac{3}{4}=\dfrac{\sqrt{17}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{17}-3}{4}\left(nhận\right)\\\sqrt{x}=\dfrac{-\sqrt{17}-3}{4}\left(loại\right)\end{matrix}\right.\)

=>\(x=\dfrac{13-3\sqrt{17}}{8}\left(nhận\right)\)

4: \(x^4+4x^2+1=3x^3+3x\)

=>\(x^4-3x^3+4x^2-3x+1=0\)

=>\(x^4-x^3-2x^3+2x^2+2x^2-2x-x+1=0\)

=>\(x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^3-2x^2+2x-1\right)=0\)

=>\(\left(x-1\right)\left(x^3-x^2-x^2+x+x-1\right)=0\)

=>\(\left(x-1\right)^2\cdot\left(x^2-x+1\right)=0\)

=>(x-1)^2=0

=>x-1=0

=>x=1

Nguyễn Việt Lâm
16 tháng 1 lúc 20:28

a.

\(x^3+8x=5x^2+4\)

\(\Leftrightarrow x^3-5x^2+8x-4=0\)

\(\Leftrightarrow\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x\left(x-2\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

b.

\(x^3+3x^2-x-6=0\)

\(\Leftrightarrow\left(x^3+x^2-3x\right)+\left(2x^2+2x-6\right)=0\)

\(\Leftrightarrow x\left(x^2+x-3\right)+2\left(x^2+x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1\pm\sqrt{13}}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
16 tháng 1 lúc 20:33

c.

\(2x+3\sqrt{x}+1=0\)

ĐKXĐ: \(x\ge0\)

Do \(x\ge0\Rightarrow\left\{{}\begin{matrix}2x\ge0\\3\sqrt{x}\ge0\end{matrix}\right.\)

\(\Rightarrow2x+3\sqrt{x}+1>0\)

Pt đã cho vô nghiệm

d.

\(x^4+4x^2+1=3x^3+3x\)

\(\Leftrightarrow x^4-3x^3+4x^2-3x+1=0\)

- Với \(x=0\) ko phải nghiệm

- Với \(x\ne0\) chia cả 2 vế của pt cho \(x^2\)

\(\Rightarrow x^2-3x+4-\dfrac{3}{x}+\dfrac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}+2\right)-3\left(x+\dfrac{1}{x}\right)+2=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-3\left(x+\dfrac{1}{x}\right)+2=0\)

Đặt \(x+\dfrac{1}{x}=t\)

\(\Rightarrow t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=2\\x+\dfrac{1}{x}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x+1=0\left(vn\right)\\x^2-2x+1=0\end{matrix}\right.\)

\(\Rightarrow x=1\)