Tìm x :(12x-1)(6x-1)(4x-1)(3x-1)=330
giúp mình đi mà
Tìm x biết : ( 12x - 1 )( 6x - 1 )( 4x - 1 )( 3x - 1 ) = 330
Giúp mình với !!!!!!!!!!!!!!!!!!!!!!!!
Tìm x, biết:
a) (2x+2)(x-1)-(x+2)(2x+1)=0;
b)(3x+1)(2x-3)-6x(x+2)=16;
c)(12x-5)(4x-1)+(3x-7)(1-16x)=81
mn ơi giúp mik vs ạ :<
a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0
=>-5x-4=0
=>x=-4/5
b: =>6x^2-9x+2x-3-6x^2-12x=16
=>-19x=19
=>x=-1
c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81
=>83x=83
=>x=1
giải phương trình theo phương pháp đặt ẩn phụ
a) (X+1)^2 x (2X+1)(2X+3)-18
b) (3X-2)^2(6X-5)(6X-3)-5
c) (4X+1)(12X-1)(3X+2)(x+1)-4
d) (6X+5)^2(3X+2)(x+1)-35
e) (2X-1)(X-1)(4X+3)(8X-6)-4
a) (X+1)^2 x (2X+1)(2X+3)-18
=4/4x(x+1)^2 x(2X+1)(2X+3)-18
=1/4 x (2X +2)^2 x (2X+1)(2X+3)-18
đặt y= 2X+2
....còn nữa mà mình ko biết các bạn giúp minh với
các bài còn lại làm tương tự, các bạn giúp mình với
giúp mình bài ni với :3x^2(x+1)-5x(x+1)^2+4(x+1)
1 thinh nhan
a(3x-x)(4x-5)-(4x-1)(3x-2)
b2x(6x-2)-3x(4x-1)
2dung dinh nghia phan thuc bang nhau ,chung minh
a)12x^2y/8xy=6x^2y^2/4xy^2
b)2(x-1)/6x=x^2-x/3x^2
tìm x
a(14x^3+12x^2-14x):2x=(x+2)(3x-4)
b(4x−5)(6x+1)−(8x+3)(3x−4)=15
a: ĐKXD: x<>0
\(\dfrac{14x^3+12x^2-14x}{2x}=\left(x+2\right)\left(3x-4\right)\)
=>\(\dfrac{2x\left(7x^2+6x-7\right)}{2x}=\left(x+2\right)\left(3x-4\right)\)
=>\(7x^2+6x-7=3x^2-4x+6x-8\)
=>\(7x^2+6x-7=3x^2+2x-8\)
=>\(4x^2+4x+1=0\)
=>\(\left(2x+1\right)^2=0\)
=>2x+1=0
=>x=-1/2(nhận)
b: \(\left(4x-5\right)\left(6x+1\right)-\left(8x+3\right)\left(3x-4\right)=15\)
=>\(24x^2+4x-30x-5-\left(24x^2-32x+9x-12\right)=15\)
=>\(24x^2-26x-5-24x^2+23x+12=15\)
=>-3x+7=15
=>-3x=8
=>\(x=-\dfrac{8}{3}\)
\(\left(4x+1\right)\left(12x-1\right)\left(3x-2\right)\left(x+1\right)-4\) (Sửa đề)
\(=[\left(4x+1\right)\left(3x+2\right)][\left(12x-1\right)\left(x+1\right)]-4\)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
Đặt \(12x^2+11x-1=n\)
\(=\left(n+3\right)n-4\)
\(=n^2+3n-4\)
\(=n^2-n+4n-4\)
\(=n\left(n-1\right)+4\left(n-1\right)\)
\(=\left(n-1\right)\left(n+4\right)\)
\(=\left(12x^2+11x-1-1\right)\left(12x^2+11x-1+4\right)\)
\(=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)
\(\left(3x+4\right)\left(x+1\right)\left(6x+7\right)^2=6\)
\(\Leftrightarrow\left(3x^2+7x+4\right)\left(36x^2+84x+49\right)=6\)(1)
Đặt \(\left(3x^2+7x+4\right)=n\)lúc đó (1):
\(\left(12n+1\right)n=6\)
\(\Rightarrow\hept{\begin{cases}n=0,75\\n=\frac{2}{3}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{-2}{3}\\x=\frac{-5}{3}\end{cases}}\)
tim so nguyen x: (12x-1)(6x-1)(4x-1)(3x-1)=330
cách 1: phân tích ra ước
cách 2 áp dụng 7 hằng đẳng thức nhân tung ra
ko f l tfboys mà là TFBOYS nhé , bn có f Tứ Diệp Thảo ko vx
1) rút gọn
A, 7x + 10x =5x
2) tìm x biết
A, 4x +7x = 22. B, 12x-8x = 25. C, 1/2 x -1/3x = 4/5
Giúp mình với vì tối nay mình đi học rồi ạ
a, 7x + 10x = 5x
17x = 5x
17x - 5x = 0
12x = 0
x =0
2;
a, 4x + 7x = 22
11x = 22
x = 2
b, 12x - 8x = 25
4x = 25
x = \(\dfrac{25}{4}\)
c, \(\dfrac{1}{2}\)x - \(\dfrac{1}{3}\)x = \(\dfrac{4}{5}\)
(\(\dfrac{1}{2}-\dfrac{1}{3}\))x = \(\dfrac{4}{5}\)
\(\dfrac{1}{6}\)x = \(\dfrac{4}{5}\)
x = \(\dfrac{4}{5}\) : \(\dfrac{1}{6}\)
x = \(\dfrac{24}{5}\)
Giải các phương trình sau
a)\(x^3+8x=5x^2+4\)
b) \(x^3+3x^2=x+6 \)
c)\(2x+3\sqrt{x}=1\)
4) \(x^4+4x^2+1=3x^3+3x\)
5)\((12x-1)(6x-1)(4x-1)(3x-1)=330\)
a: \(x^3+8x=5x^2+4\)
=>\(x^3-5x^2+8x-4=0\)
=>\(x^3-x^2-4x^2+4x+4x-4=0\)
=>\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-4x+4\right)=0\)
=>\(\left(x-1\right)\left(x-2\right)^2=0\)
=>\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2: \(x^3+3x^2=x+6\)
=>\(x^3+3x^2-x-6=0\)
=>\(x^3+2x^2+x^2+2x-3x-6=0\)
=>\(x^2\cdot\left(x+2\right)+x\left(x+2\right)-3\left(x+2\right)=0\)
=>\(\left(x+2\right)\left(x^2+x-3\right)=0\)
=>\(\left[{}\begin{matrix}x+2=0\\x^2+x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1+\sqrt{13}}{2}\\x=\dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)
3: ĐKXĐ: x>=0
\(2x+3\sqrt{x}=1\)
=>\(2x+3\sqrt{x}-1=0\)
=>\(x+\dfrac{3}{2}\sqrt{x}-\dfrac{1}{2}=0\)
=>\(\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{17}{16}=0\)
=>\(\left(\sqrt{x}+\dfrac{3}{4}\right)^2=\dfrac{17}{16}\)
=>\(\left[{}\begin{matrix}\sqrt{x}+\dfrac{3}{4}=-\dfrac{\sqrt{17}}{4}\\\sqrt{x}+\dfrac{3}{4}=\dfrac{\sqrt{17}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{17}-3}{4}\left(nhận\right)\\\sqrt{x}=\dfrac{-\sqrt{17}-3}{4}\left(loại\right)\end{matrix}\right.\)
=>\(x=\dfrac{13-3\sqrt{17}}{8}\left(nhận\right)\)
4: \(x^4+4x^2+1=3x^3+3x\)
=>\(x^4-3x^3+4x^2-3x+1=0\)
=>\(x^4-x^3-2x^3+2x^2+2x^2-2x-x+1=0\)
=>\(x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^3-2x^2+2x-1\right)=0\)
=>\(\left(x-1\right)\left(x^3-x^2-x^2+x+x-1\right)=0\)
=>\(\left(x-1\right)^2\cdot\left(x^2-x+1\right)=0\)
=>(x-1)^2=0
=>x-1=0
=>x=1
a.
\(x^3+8x=5x^2+4\)
\(\Leftrightarrow x^3-5x^2+8x-4=0\)
\(\Leftrightarrow\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)^2-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
b.
\(x^3+3x^2-x-6=0\)
\(\Leftrightarrow\left(x^3+x^2-3x\right)+\left(2x^2+2x-6\right)=0\)
\(\Leftrightarrow x\left(x^2+x-3\right)+2\left(x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1\pm\sqrt{13}}{2}\end{matrix}\right.\)
c.
\(2x+3\sqrt{x}+1=0\)
ĐKXĐ: \(x\ge0\)
Do \(x\ge0\Rightarrow\left\{{}\begin{matrix}2x\ge0\\3\sqrt{x}\ge0\end{matrix}\right.\)
\(\Rightarrow2x+3\sqrt{x}+1>0\)
Pt đã cho vô nghiệm
d.
\(x^4+4x^2+1=3x^3+3x\)
\(\Leftrightarrow x^4-3x^3+4x^2-3x+1=0\)
- Với \(x=0\) ko phải nghiệm
- Với \(x\ne0\) chia cả 2 vế của pt cho \(x^2\)
\(\Rightarrow x^2-3x+4-\dfrac{3}{x}+\dfrac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}+2\right)-3\left(x+\dfrac{1}{x}\right)+2=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-3\left(x+\dfrac{1}{x}\right)+2=0\)
Đặt \(x+\dfrac{1}{x}=t\)
\(\Rightarrow t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=2\\x+\dfrac{1}{x}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x+1=0\left(vn\right)\\x^2-2x+1=0\end{matrix}\right.\)
\(\Rightarrow x=1\)