\(u+v=42\)
\(u.v=441\)
tìm 2 số \(u\)và \(v\)
Tìm hai số u,v trong mỗi trường hợp sau:
a) u+v = 29 và u.v = 198
b) u+v = \(3\sqrt{2}\) và u.v = 4
c) u-v = -2 và u.v = -80
d) \(u^2+v^2=13\) và u.v = 6
a) Vì u+v=29 và uv=198 nên u,v là hai nghiệm của phương trình:
\(x^2-29x+198=0\)
\(\Leftrightarrow x^2-18x-11x+198=0\)
\(\Leftrightarrow x\left(x-18\right)-11\left(x-18\right)=0\)
\(\Leftrightarrow\left(x-18\right)\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-18=0\\x-11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18\\x=11\end{matrix}\right.\)
Vậy: u=18; v=11
Tìm hai số u, v trong mỗi trường hợp sau:
a) u + v = \(3\sqrt{2}\) và u.v =4
b) u - v = -2 và u.v = 80
c) \(u^2+v^2\) = 13 và u.v = 16
a) Vì \(u+v=3\sqrt{2}\) và uv=4
nên u,v là hai nghiệm của phương trình: \(x^2-3\sqrt{2}x+4=0\)
\(\Delta=\left(-3\sqrt{2}\right)^2-4\cdot1\cdot4=18-16=2>0\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3\sqrt{2}-\sqrt{2}}{2}=\sqrt{2}\\x_2=\dfrac{3\sqrt{2}+\sqrt{2}}{2}=2\sqrt{2}\end{matrix}\right.\)
Vậy: \(u=\sqrt{2};v=2\sqrt{2}\)
Tìm hai số u và v trong mỗi trường hợp sau:
a) u + v = 42, uv = 441
b) u + v = -42, uv = -400
c) u – v = 5, uv = 24
a) S = 42; P = 441 ⇒ S 2 – 4 P = 42 2 – 4 . 441 = 0
⇒ u và v là hai nghiệm của phương trình: x 2 – 42 x + 441 = 0
Có: Δ ’ = ( - 21 ) 2 – 441 = 0
⇒ Phương trình có nghiệm kép x 1 = x 2 = - b ’ / a = 21 .
Vậy u = v = 21.
b) S = -42; P = -400 ⇒ S 2 – 4 P = ( - 42 ) 2 – 4 . ( - 400 ) = 3364 > 0
⇒ u và v là hai nghiệm của phương trình: x 2 + 42 x – 400 = 0
Có Δ ’ = 21 2 – 1 . ( - 400 ) = 841
⇒ Phương trình có hai nghiệm phân biệt:
Vậy u = 8; v = -50 hoặc u = -50; v = 8.
c) u – v = 5 ⇒ u + (-v) = 5
u.v = 24 ⇒ u.(-v) = -uv = -24.
Ta tìm u và –v. Từ đó, ta dễ dàng tính được u và v.
S= u + (-v) = 5; P = u. (-v) = -24 ⇒ S 2 – 4 P = 5 2 – 4 . ( - 24 ) = 121 > 0
⇒ u và –v là hai nghiệm của phương trình: x 2 – 5 x – 24 = 0
Có Δ = ( - 5 ) 2 – 4 . 1 . ( - 24 ) = 121
⇒ Phương trình có hai nghiệm phân biệt
⇒ u = 8; -v = -3 hoặc u = -3; -v = 8
⇒ u = 8; v = 3 hoặc u = -3; v = -8.
Tìm hai số u và v trong mỗi trường hợp sau:
u + v = 42, uv = 441
S = 42; P = 441 ⇒ S2 – 4P = 422 – 4.441 = 0
⇒ u và v là hai nghiệm của phương trình: x2 – 42x + 441 = 0
Có: Δ’ = (-21)2 – 441 = 0
⇒ Phương trình có nghiệm kép x1 = x2 = -b’/a = 21.
Vậy u = v = 21.
Tìm hai số u và v trong mỗi trường hợp sau:
a) u+v=42,uv=441;
b)u+v=-42,uv=-400;
c)u-v=5,uv=24
Tìm hai số u và v trong trường hợp : u\(^2\)+v\(^2\)=13; u.v=6
Tìm hai số u và v trong mỗi trường hợp sau:
a) u + v = 42; uv = 441; b) u + v = - 42; uv = - 400;
c) u - v = 5; uv = 24.
a) u + v = 42, uv = 441 => u, v là nghiệm của phương trình:
x2 – 42x + 441 = 0
∆’ = 212 – 441 = 441 – 441 = 0, √∆’ = 0; x1 = x2 = 21
Vậy u = v = 21
b) u + v = -42, uv = -400, u, v là nghiệm của phương trình:
x2 + 42x – 400 = 0
∆’ = 441 + 400 = 841, √∆’ = 29; x1 = 8, x2 = -50. Do đó:
u = 8, v = -50 hoặc u = -50, v = 8
c) u – v = 5, uv = 24. Đặt –v = t, ta có u + t = 5, ut = -24, ta tìm được:
u = 8, t = -3 hoặc u = -3, t = 8. Do đó:
u = 8, v = 3 hoặc u = -3, t = 8.
a) u + v = 42, uv = 441 => u, v là nghiệm của phương trình:
x2 – 42x + 441 = 0
∆’ = 212 – 441 = 441 – 441 = 0, √∆’ = 0; x1 = x2 = 21
Vậy u = v = 21
b) u + v = -42, uv = -400, u, v là nghiệm của phương trình:
x2 + 42x – 400 = 0
∆’ = 441 + 400 = 841, √∆’ = 29; x1 = 8, x2 = -50. Do đó:
u = 8, v = -50 hoặc u = -50, v = 8
c) u – v = 5, uv = 24. Đặt –v = t, ta có u + t = 5, ut = -24, ta tìm được:
u = 8, t = -3 hoặc u = -3, t = 8. Do đó:
u = 8, v = 3 hoặc u = -3, t = 8.
Tìm hai số u và v trong mỗi trường hợp sau:
a) u + v =15 ; u.v = 36
b) u + v = 4 ; u.v = 7
c) u + v = 9 ; u.v = -90
d) u ² + v ²= 13 ; u.v = 6
Giúp mình với mình đang cần gấp, cảm ơn trước ạ!!!o(╥﹏╥)o
a) u, v là nghiệm phương trình:
X^2 - 15 X + 36 = 0
\(\Delta=15^2-4.36=81\)
=> \(\orbr{\begin{cases}X=\frac{-\left(-15\right)+\sqrt{81}}{2}=12\\X=\frac{-\left(-15\right)-\sqrt{81}}{2}=3\end{cases}}\)
Vậy (u; v) = ( 12; 3 ) hoặc (u; v ) = (3; 12)
b) và c ) tương tự
d) \(u^2+v^2=\left(u+v\right)^2-2uv=13\)
=> \(\left(u+v\right)^2=25\)
=> u + v = 5 hoặc u + v = - 25
Có 2 TH:
TH1: u + v = 5 và uv= 6
TH2: u + v = -5 và uv = 6
Làm tương tự như câu a.
Tìm hai số u và v trong mỗi trường hợp sau:
a) \(u+v=8;u.v=15\)
b) \(u+v=-7;u.v=-18\)
c) \(u+v=5;u.v=-24\)
d) \(u-v=10;u.v=-21\)
Cảm ơn trước nhe