Tìm giá trị lớn nhất:
A=|x-1| + |x-2| + 2018
tìm giá trị nhỏ nhất:A=|x-2| + |x-20|
Tìm x để biểu thức sau đạt giá trị nhỏ nhất:
a,A=/x/+5
b,B=/x-2/3/-4
c,C=/3x-1/-1/2
a) Do \(\left|x\right|\ge0\)
\(\Rightarrow A=\left|x\right|+5\ge5\)
\(minA=5\Leftrightarrow x=0\)
b) Do \(\left|x-\dfrac{2}{3}\right|\ge0\)
\(\Rightarrow B=\left|x-\dfrac{2}{3}\right|-4\ge-4\)
\(minB=-4\Leftrightarrow x=\dfrac{2}{3}\)
c) Do \(\left|3x-1\right|\ge0\)
\(\Rightarrow C=\left|3x-1\right|-\dfrac{1}{2}\ge-\dfrac{1}{2}\)
\(minC=-\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{3}\)
\(A=\left|x\right|+5\ge5\)
Dấu \("="\Leftrightarrow x=0\)
\(B=\left|x-\dfrac{2}{3}\right|-4\ge-4\)
Dấu \("="\Leftrightarrow x-\dfrac{2}{3}=0\Leftrightarrow x=\dfrac{2}{3}\)
\(C=\left|3x-1\right|-\dfrac{1}{2}\ge-\dfrac{1}{2}\)
Dấu \("="\Leftrightarrow3x-1=0\Leftrightarrow x=\dfrac{1}{3}\)
Tìm giá trị nhỏ nhất của biểu thức: |x-5|+120
Tìm giá trị lớn nhất của biểu thức: 2018-(x-1)^2
Ta có :
\(\left(x-1\right)^2\ge0\)
\(\Rightarrow\)\(2018-\left(x-1\right)^2\le2018\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-1\right)^2=1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)
Vậy GTLN của biểu thức \(2018-\left(x-1\right)^2\) là \(2018\) khi \(x=0\) hoặc \(x=2\)
Chúc bạn học tốt ~
Ta có :
\(\left|x-5\right|\ge5\)
\(\Rightarrow\)\(\left|x-5\right|+120\ge120\)
Dấu "=" xảy ra khi và chỉ khi \(\left|x-5\right|=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\)
Vậy GTNN của biểu thức \(\left|x-5\right|+120\) là \(120\) khi \(x=5\)
Chúc bạn học tốt ~
A=2017-(x+1). Tìm giá trị lớn nhất của A
B=giá trị tuyệt đối của x+2017cộng với 2018
Tìm giá trị nhỏ nhất của B
C=giá trị tuyệt đối của x+2017 cộng với giá trị tuyệt đối của y+2018 cộng với 2019
Tìm giá trị lớn nhất của C
Tìm giá trị lớn nhất của A biết: A = 2018 - 2(x2+1)2018
\(A=2018+2\left(x^2+1\right)^{2018}\)
Để A lớn nhất => 2(x2+1)2018 nhỏ nhất \(\left(1\right)\)
Ta thấy:
\(2\left(x^2+1\right)^{2018}\ge0\)\(\left(2\right)\)
Từ (1); (2)\(\Rightarrow\left(x^2+1\right)^{2018}=0\) \(\Rightarrow x^2+1=0\)
\(\Rightarrow x^2=-1\)(LOẠI)
Nếu (x2 + 1)2018 = 1
\(\Rightarrow\orbr{\begin{cases}x^2+1=1\\x^2+1=-1\left(L\right)\end{cases}}\)
\(\Leftrightarrow x=0\)(TM)
\(\Rightarrow A=2018-2.1=2016\)
Vậy GTLN của A là 2016 tại x = 0
Tìm giá trị nhỏ nhất:a=[x-2021]+[x-2022]
\(a=\left|x-2021\right|+\left|x-2022\right|\)
\(=\left|x-2021\right|+\left|2022-x\right|\)
\(\ge\left|x-2021+2022-x\right|=1\)
\(A=1\Leftrightarrow\left(x-2021\right)\left(2022-x\right)\ge0\)
\(\Rightarrow2021\le x\le2022\)
1. Tìm giá trị nhỏ nhất của
a) P(x) = x^2018 + 4x^2 + 10
b) M(x) = x^2 + x +1
2. Tìm giá trị lớn nhất của
a) Q(x) = -x^4 - 1
b) N(x) = -x^2 + 2x -2
Bài 1a)
\(P\left(x\right)=x^{2018}+4x^2+10\)
VÌ \(x^{2018}\ge0\forall x;4x^2\ge0\forall x\)
\(\Rightarrow x^{2018}+4x^2+10\ge10\forall x\)
Hay \(P\left(x\right)\ge10\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Bài 1b)
\(M\left(x\right)=x^2+x+1\)
\(M\left(x\right)=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(M\left(x\right)=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)
Bài 2a)
\(Q\left(x\right)=-x^4-1\)
Vì \(-x^4\le0\forall x\)
\(\Rightarrow-x^4-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Tìm giá trị lớn nhất của N=
\(\dfrac{-2\left|x-2018\right|-2021}{2020+\left|x-2018\right|}\)
a)tìm giá trị nhỏ nhất của biểu thức E = |x-30|+|y-4|+(z-2018)^2
b)tìm giá trị lớn nhất của biểu thức F = 19-|x-5|-(y-2018)^2