Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phan tan
Xem chi tiết
Nguyễn Văn Toàn
Xem chi tiết
Cô Gái Mùa Đông
Xem chi tiết
KCLH Kedokatoji
15 tháng 10 2020 lúc 19:16

a) Áp dụng bđt AM-GM: \(+\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2zx\end{cases}}\)\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\left(đpcm\right)\)

Dấu "=" xay ra khi \(x=y=z\)

b) Bổ đề; \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng : \(A=x^2+y^2+z^2\ge\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)

c) Bổ đề: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng: \(B\le\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)

d) \(A+B=x^2+y^2+z^2+xy+yz+zx=\left(x+y+z\right)^2-\left(xy+yz+zx\right)\)

\(\ge\left(x+y+z\right)^2-\frac{\left(x+y+z\right)^2}{3}\)

\(=\frac{2}{3}\left(x+y+z\right)^2=6\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Khách vãng lai đã xóa
Khánh Ngọc
15 tháng 10 2020 lúc 19:39

Bài này tuy dễ nhưng hơi loằng ngoằng giữa các câu :))

a. Cách phổ thông : x2 + y2 + z2\(\ge\)xy + yz + zx

<=> 2 ( x2 + y2 + z2 )\(\ge\)2 ( xy + yz + zx )

<=> ( x2 - 2xy + y2 ) + ( y2 - 2yz + z2 ) + ( z2 - 2zx + x2 )\(\ge\)0

<=> ( x - y )2 + ( y - z )2 + ( z - x )2\(\ge\)0 ( * )

Vì ( x - y )2 \(\ge\)0 ; ( y - z )2 \(\ge\)0 ; ( z - x )2\(\ge\)0\(\forall\)x ; y ; z

=> ( * ) đúng 

=> A\(\ge\)B ; dấu "=" xảy ra <=> x = y = z

b. Xài Cauchy cho mới

( x2 + y2 + z2 ) ( 12 + 12 + 12 )\(\ge\)( x + y + z )2 = 32 = 9

<=> 3 ( x2 + y2 + z2 )\(\ge\)

<=> x2 + y2 + z2\(\ge\)3

Dấu "=" xảy ra <=> x = y = z = 1

Vậy minA = 3 <=> x = y = z = 1

c. Theo câu a và câu b ta có : 3 ( xy + yz + zx )\(\le\)( x + y + z )2 = 32 = 9

<=> xy + yz + zx\(\le\)3

Dấu "=" xảy ra <=> x = y = 1

Vậy maxB = 3 <=> x = y = 1

d. x + y + z = 3 . BP 2 vế ta được

x2 + y2 + z2 + 2( xy + yz + zx ) = 9

Hay A + 2B = 9 . Mà B\(\le\)3 ( câu b )

=> A + B \(\ge\)6

Dấu "=" xảy ra <=> x = y = z = 1

Vậy min A + B = 6 <=> x = y = z = 1

Khách vãng lai đã xóa
KCLH Kedokatoji
15 tháng 10 2020 lúc 19:41

b) Cái này là bạn đang chứng minh dùng CBS mà ?

Khách vãng lai đã xóa
Đinh Nguyến Nhật Minh
Xem chi tiết
nobi nobita
Xem chi tiết
Thanh Tùng DZ
15 tháng 7 2017 lúc 20:09

Cộng thêm 1 vào mỗi đẳng thức, ta được :

\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Vì các tử số của mỗi tỉ số bằng nhau suy ra các mẫu số của mỗi tỉ số bằng nhau

\(\Rightarrow b+c+d=a+c+d=a+b+d=a+b+c\)

\(\Rightarrow a=b=c=d\)

\(A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{a+d}{a+b}+\frac{d+a}{c+d}\)

\(A=1+1+1+1=4\)

Đông Viên
Xem chi tiết
Võ Hồng Phúc
19 tháng 10 2019 lúc 20:48
Khách vãng lai đã xóa
Võ Hồng Phúc
19 tháng 10 2019 lúc 20:48
Khách vãng lai đã xóa
Lê Thị Thục Hiền
19 tháng 10 2019 lúc 23:18

Làm được ở TH a,b,c > hoặc = 0 thôi nha ( nếu a,b,c>0 thì mình chỉ biết tìm maxP thôi)

Đặt \(\sqrt{a+b}=x\), \(\sqrt{b+c}=y\),\(\sqrt{c+a}=z\) (x,y,z \(\ge0\))

=> \(0\le x,y,z\le2\)

\(x^2+y^2+z^2=2\left(a+b+c\right)=2.4=8\)

\(2-x\ge0\) => \(x\left(2-x\right)\ge0\) <=> \(2x-x^2\ge0\) <=> \(2x\ge x^2\)

Cm tương tự cũng có: \(2y\ge y^2\) , \(2z\ge z^2\)

=>\(2x+2y+2z\ge x^2+y^2+z^2=8\)

<=> \(x+y+z\ge4\)

<=> \(P=x+y+z\ge4\)

Dấu "=" xảy ra <=>\(\left(x,y,z\right)\in\left(2,2,0\right),\left(2,0,2\right),\left(0,2,2\right)\)

=> \(\left(a,b,c\right)\in\left\{\left(0,4,0\right),\left(4,0,0\right),\left(0,0,4\right)\right\}\)

Khách vãng lai đã xóa
Phạm văn đạt
Xem chi tiết
Mr Lazy
11 tháng 7 2015 lúc 10:07

Áp dụng Côsi:

\(a^2+\left(\frac{19-\sqrt{37}}{12}\right)^2\ge2\sqrt{\left(\frac{19-\sqrt{37}}{12}\right)^2.a^2}=2.\frac{19-\sqrt{37}}{12}a\)

\(b^2+\left(\frac{19-\sqrt{37}}{12}\right)^2\ge2.\frac{19-\sqrt{37}}{12}b\)

\(c^3+\left(\frac{\sqrt{37}-1}{6}\right)^3+\left(\frac{\sqrt{37}-1}{6}\right)^3\ge3\sqrt[3]{\left(\frac{\sqrt{37}-1}{6}\right)^3\left(\frac{\sqrt{37}-1}{6}\right)^3.c^3}=3.\left(\frac{\sqrt{37}-1}{6}\right)^2c\)

\(\Rightarrow a^2+b^2+c^3+2\left(\frac{19-\sqrt{37}}{12}\right)^2+2\left(\frac{\sqrt{37}-1}{6}\right)^3\ge2.\frac{19-\sqrt{37}}{12}a+2.\frac{19-\sqrt{37}}{12}b+3.\left(\frac{\sqrt{37}-1}{6}\right)^2c\)

\(\Rightarrow a^2+b^2+c^3+2.\left(\frac{19-\sqrt{37}}{12}\right)^2+3.\left(\frac{\sqrt{37}-1}{6}\right)^3\ge\frac{19-\sqrt{37}}{6}\left(a+b+c\right)=\frac{19-\sqrt{37}}{2}\)

\(\Rightarrow a^2+b^2+c^3\ge\frac{19-\sqrt{37}}{2}-2.\left(\frac{19-\sqrt{37}}{12}\right)^2-2.\left(\frac{\sqrt{37}-1}{6}\right)^3\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=\frac{19-\sqrt{37}}{12};\text{ }c=\frac{\sqrt{37}-1}{6}\)

Vậy GTNN của biệu thức là .......

 

saadaa
Xem chi tiết
Phước Nguyễn
12 tháng 8 2016 lúc 21:54

Xét riêng lần lượt với các biểu thức   \(R=\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)  và  

\(Q=\frac{b+c+d}{a}+\frac{a+c+d}{b}+\frac{a+b+d}{c}+\frac{a+b+c}{d},\)  ta có:

\(\text{*) }\) Ta biến đổi biểu thức  \(R\)  bằng cách cộng mỗi biểu thức trong nó với  \(1,\)  cùng lúc đó, ta tạo được một nhân tử mới cho  \(R\)  để phục vụ việc chứng minh. Khi đó,  \(R\)  sẽ mang dạng mới sau:

\(R=\left(a+b+c+d\right)\left(\frac{1}{b+c+d}+\frac{1}{a+c+d}+\frac{1}{a+b+d}+\frac{1}{a+b+c}\right)-4\)

nên   \(R=\frac{1}{3}.\left[3\left(a+b+c+d\right)\right]\left(\frac{1}{b+c+d}+\frac{1}{a+c+d}+\frac{1}{a+b+d}+\frac{1}{a+b+c}\right)-4\)

Đặt  \(x=b+c+d;\)  \(y=a+c+d;\)  \(z=a+b+d;\)  và  \(t=a+b+c\)

Không quên đặt điều kiện cho các ẩn số vừa đặt, ta có:

\(\hept{\begin{cases}x,y,z,t>0\\x+y+z+t=3\left(a+b+c+d\right)\end{cases}}\)

Ta biểu diễn lại các biểu thức  \(R\)  theo các biến vừa mới nêu sau đây:

\(R=\frac{1}{3}\left(x+y+z+t\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)-4\)

Mặt khác,  theo một kết quả quen thuộc được đúc kết từ bất đẳng thức  \(Cauchy-Schwarz\)  ta được:

\(\left(x+y+z+t\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\ge16\)

Và bằng phép chứng minh theo bất đẳng thức  \(AM-GM\)  cho  \(4\) số dương, ta dễ dàng đi đến kết luận rằng bất đẳng thức ở trên là một bất đẳng thức luôn đúng với mọi  \(x,y,z,t>0\)  

Khi đó,  \(R\ge\frac{16}{3}-4=\frac{4}{3}\)

\(\text{*) }\)  Tương tự lập luận cho biểu thức  \(Q,\)  ta cũng có đánh giá khá thú vị cho nó, điển hình:

\(Q\ge12\)

Mà  \(S=R+Q\ge\frac{4}{3}+12=5\frac{1}{3}\)

Cuối cùng, với  \(a=b=c=d>0\)  (thỏa mãn điều kiện) thì  \(S=5\frac{1}{3}\)  nên suy ra  \(5\frac{1}{3}\)  là giá trị nhỏ nhất của biểu thức  \(S\)

saadaa
13 tháng 8 2016 lúc 21:09

\(\frac{4}{3}+12=\frac{40}{3}\) chu

Cassie Natalie Nicole
Xem chi tiết
Thắng Nguyễn
30 tháng 7 2017 lúc 17:51

Áp dụng BĐT AM-GM ta có:

\(A=5a+6b+7c+\frac{1}{a}+\frac{8}{b}+\frac{27}{c}\)

\(=4\left(a+b+c\right)+\left(\frac{1}{a}+a\right)+\left(\frac{8}{b}+2b\right)+\left(\frac{27}{c}+3c\right)\)

\(\ge4\cdot6+2\sqrt{\frac{1}{a}\cdot a}+2\sqrt{\frac{8}{b}\cdot2b}+2\sqrt{\frac{27}{c}\cdot3c}\)

\(\ge24+2+2\cdot4+2\cdot9=52\)

Xảy ra khi \(\frac{1}{a}=a;\frac{8}{b}=2b;\frac{27}{c}=3c\Rightarrow a=1;b=2;c=3\)