Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuan Mai Thi
Xem chi tiết
alibaba nguyễn
16 tháng 5 2017 lúc 11:31

\(B=\frac{2cosa-sina}{cosa+2sina}=\frac{2-tana}{1+2tana}=\frac{2-2+\sqrt{3}}{1+2\left(2-\sqrt{3}\right)}=\frac{\sqrt{3}}{5-2\sqrt{3}}\)

PS: Mấy cái như điều kiện xác định thì bạn tự làm nhé.

Kiki :))
Xem chi tiết
迪丽热巴·迪力木拉提
17 tháng 5 2021 lúc 20:09

a) \(4sinx-1=1\Leftrightarrow4sinx=2\Leftrightarrow sinx=\dfrac{2}{4}=\dfrac{1}{2}\)

\(\Leftrightarrow x=30^o\)

b) \(2\sqrt{3}-3tanx=\sqrt{3}\Leftrightarrow3tanx=2\sqrt{3}-\sqrt{3}=\sqrt{3}\Leftrightarrow tanx=\dfrac{\sqrt{3}}{3}\)

\(\Leftrightarrow x=30^o\)

c) \(7sinx-3cos\left(90^o-x\right)=2,5\Leftrightarrow7sinx-3sinx=2,5\Leftrightarrow4sinx=2,5\Leftrightarrow sinx=\dfrac{5}{8}\Leftrightarrow x=30^o41'\)

d)\(\left(2sin-\sqrt{2}\right)\left(4cos-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2sin-\sqrt{2}=0\\4cos-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2sin=\sqrt{2}\\4cos=5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}sin=\dfrac{\sqrt{2}}{2}\\cos=\dfrac{5}{4}\left(loai\right)\end{matrix}\right.\)\(\Rightarrow x=45^o\)

 

迪丽热巴·迪力木拉提
17 tháng 5 2021 lúc 20:17

Xin lỗi nãy đang làm thì bấm gửi, quên còn câu e, f nữa:"(

e) \(\dfrac{1}{cos^2x}-tanx=1\Leftrightarrow1+tan^2x-tanx-1=0\Leftrightarrow tan^2x-tanx=0\Leftrightarrow tanx\left(tanx-1\right)=0\Rightarrow tanx-1=0\Leftrightarrow tanx=1\Leftrightarrow x=45^o\)

f) \(cos^2x-3sin^2x=0,19\Leftrightarrow1-sin^2x-3sin^2x=0,19\Leftrightarrow1-4sin^2x=0,19\Leftrightarrow4sin^2x=0,81\Leftrightarrow sin^2x=\dfrac{81}{400}\Leftrightarrow sinx=\dfrac{9}{20}\Leftrightarrow x=26^o44'\)

Giao Khánh Linh
Xem chi tiết
Nguyễn Tất Phi Hạc
Xem chi tiết
Không Có Tên
5 tháng 7 2017 lúc 21:25

Ta có: \(\left(\sin\alpha+\cos\alpha\right)^2=\sin^2\alpha+\cos^2\alpha+2\sin\alpha.\cos\alpha\)\(=1+2.\frac{1}{2}=1+1=2\)

=> \(\sin\alpha+\cos\alpha=\sqrt{2}\)=> \(\sin\alpha=\sqrt{2}-\cos\alpha\)

=> \(\sin\alpha.\cos\alpha=\left(\sqrt{2}-\cos\alpha\right).\cos\alpha=\sqrt{2}.\cos\alpha-\cos^2\alpha=\frac{1}{2}\)

=> \(\cos^2\alpha-\sqrt{2}\cos\alpha+\frac{1}{2}=0\)

Xong bạn giải phương trình bậc 2 => \(\cos\alpha=\frac{\sqrt{2}}{2}\)=> \(\alpha=45^o\)

Hoang Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 22:34

a: sin a=1/2

=>a=30 độ

b: cos a=2/3

=>\(a\simeq48^0\)

c: tan a=4/5

=>\(a\simeq39^0\)

d: \(cota=\dfrac{3}{4}\)

=>tan a=4/3

=>\(a\simeq53^0\)

 

Mở ảnh

Huỳnh Diệu Linh
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 22:47

a) Vì \(\frac{\pi }{2} < a < \pi \) nên \(\cos a < 0\). Do đó \(\cos a = \sqrt {1 - {{\sin }^2}a}  = \sqrt {1 - \frac{1}{3}}  =  - \frac{{\sqrt 6 }}{3}\)

Ta có: \(\cos \left( {a + \frac{\pi }{6}} \right) = \cos a\cos \frac{\pi }{6} - \sin a\sin \frac{\pi }{6} =  - \frac{{\sqrt 6 }}{3}.\frac{{\sqrt 3 }}{2} - \frac{1}{{\sqrt 3 }}.\frac{1}{2} =  - \frac{{\sqrt 3  + 3\sqrt 2 }}{6}\)

b) Vì \(\pi  < a < \frac{{3\pi }}{2}\) nên \(\sin a < 0\). Do đó \(\sin a = \sqrt {1 - {{\cos }^2}a}  = \sqrt {1 - \frac{1}{9}}  =  - \frac{{2\sqrt 2 }}{3}\)

Suy ra \(\tan a\; = \frac{{\sin a}}{{\cos a}} = \frac{{ - \frac{{2\sqrt 2 }}{3}}}{{ - \frac{1}{3}}} = 2\sqrt 2 \)

Ta có: \(\tan \left( {a - \frac{\pi }{4}} \right) = \frac{{\tan a - \tan \frac{\pi }{4}}}{{1 + \tan a\tan \frac{\pi }{4}}} = \frac{{\frac{{\sin a}}{{\cos a}} - 1}}{{1 + \frac{{\sin a}}{{\cos a}}}} = \frac{{2\sqrt 2  - 1}}{{1 + 2\sqrt 2 }} = \frac{{9 - 4\sqrt 2 }}{7}\)

Nguyễn Kim Mai
Xem chi tiết
Nguyễn Quỳnh Anhh
Xem chi tiết
Út Thảo
1 tháng 8 2021 lúc 9:04

Sin a= \(\sqrt{1-cos²a}\)=\(\dfrac{2√2}{3}\)