Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 3 2022 lúc 23:23

a.

- Với \(m=\pm1\Rightarrow-6x=1\Rightarrow x=-\dfrac{1}{6}\) có nghiệm

Đặt \(f\left(x\right)=\left(1-m^2\right)x^3-6x-1\)

- Với \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\Rightarrow1-m^2>0\)

\(f\left(0\right)=-1< 0\)

\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left[\left(1-m\right)^2x^3-6x-1\right]\)

\(=\lim\limits_{x\rightarrow-\infty}x^3\left(1-m^2-\dfrac{6}{m^2}-\dfrac{1}{m^3}\right)=-\infty\left(1-m^2\right)=+\infty\) dương

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;0\right)\)

- Với \(-1< m< 1\Rightarrow1-m^2< 0\)

\(\lim\limits_{x\rightarrow+\infty}\left[\left(1-m^2\right)x^3-6x-1\right]=\lim\limits_{x\rightarrow+\infty}x^3\left[\left(1-m^2\right)-\dfrac{6}{x^2}-\dfrac{1}{x^3}\right]=+\infty\left(1-m^2\right)=+\infty\) dương

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)

Vậy pt đã cho có nghiệm với mọi m

Nguyễn Việt Lâm
8 tháng 3 2022 lúc 23:26

b. Để chứng minh pt này có đúng 1 nghiệm thì cần áp dụng thêm kiến thức 12 (tính đơn điệu của hàm số). Chỉ bằng kiến thức 11 sẽ ko chứng minh được

c. 

Đặt \(f\left(x\right)=\left(m-1\right)\left(x-2\right)^2\left(x-3\right)^3+2x-5\)

Do \(f\left(x\right)\) là hàm đa thức nên \(f\left(x\right)\) liên tục trên R

\(f\left(2\right)=4-5=-1< 0\)

\(f\left(3\right)=6-5=1>0\)

\(\Rightarrow f\left(2\right).f\left(3\right)< 0\) với mọi m

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (2;3) với mọi m

Hay pt đã cho luôn luôn có nghiệm

Despacito
Xem chi tiết
Aoi Ogata
22 tháng 2 2018 lúc 16:45

có \(\Delta=\left[2\left(m-2\right)\right]^2-4\left(-2m+1\right)\)

\(\Delta=4\left(m^2-4m+4\right)+8m-4\)

\(\Delta=4m^2-16m+16+8m-4\)

\(\Delta=4m^2-8m+12\)

\(\Delta=m^2-2m+3\)

\(\Delta=m^2-2m+1+2\)

\(\Delta=\left(m-1\right)^2+2>0\forall m\)

vì \(\Delta>0\forall m\)nên pt (1) luôn có 2 nghiệm phân biệt với mọi m 

Hug Hug - 3 cục bánh bao...
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 8 2021 lúc 20:55

\(\Delta'=m^2+1\Rightarrow\left\{{}\begin{matrix}x_1=m+1+\sqrt{m^2+1}\\x_2=m+1-\sqrt{m^2+1}\end{matrix}\right.\)

(Do \(m+1-\sqrt{m^2+1}< \sqrt{m^2+1}+1-\sqrt{m^2+1}< 4\) nên nó ko thể là nghiệm \(x_1\))

Từ điều kiện \(x_1\ge4\Rightarrow m+1+\sqrt{m^2+1}\ge4\Rightarrow\sqrt{m^2+1}\ge3-m\)

\(\Rightarrow\left[{}\begin{matrix}m\ge3\\\left\{{}\begin{matrix}m< 3\\m^2+1\ge m^2-6m+9\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{4}{3}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{matrix}\right.\)

\(x_1^2=9x_2+10\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2=9x_2+10\)

\(\Leftrightarrow2\left(m+1\right)x_1-2m=9x_2+10\)

\(\Leftrightarrow2\left(m+1\right)x_1-2m=9\left(2\left(m+1\right)-x_1\right)+10\)

\(\Leftrightarrow\left(2m+11\right)x_1=20m+28\Rightarrow x_1=\dfrac{20m+28}{2m+11}\) 

\(\Rightarrow x_2=2\left(m+1\right)-x_1=\dfrac{4m^2+6m-6}{2m+11}\)

Thế vào \(x_1x_2=2m\)

\(\Rightarrow\left(\dfrac{20m+28}{2m+11}\right)\left(\dfrac{4m^2+6m-6}{2m+11}\right)=2m\)

\(\Leftrightarrow\left(3m-4\right)\left(12m^2+40m+21\right)=0\)

\(\Leftrightarrow m=\dfrac{4}{3}\) (do \(12m^2+40m+21>0;\forall m\ge\dfrac{4}{3}\))

Nguyễn Thành
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 11 2021 lúc 8:06

\(a,\Delta=4\left(m-1\right)^2-4\left(-2m-3\right)=4m^2-8m+4+8m+12\\ \Delta=4m^2+16>0\left(đpcm\right)\\ b,\Delta=\left(2m-1\right)^2-4\left(2m-2\right)=4m^2-4m+1-8m+8\\ \Delta=4m^2-12m+9=\left(2m-3\right)^2\ge0\left(đpcm\right)\\ c,Sửa:x^2-2\left(m+1\right)x+2m-2=0\\ \Delta=4\left(m+1\right)^2-4\left(2m-2\right)=4m^2+8m+4-8m+8\\ \Delta=4m^2+12>0\left(đpcm\right)\\ d,\Delta=4\left(m+1\right)^2-4\cdot2m=4m^2+8m+4-8m\\ \Delta=4m^2+4>0\left(đpcm\right)\\ e,\Delta=4m^2-4\left(m+7\right)=4m^2-4m+7=\left(2m-1\right)^2+6>0\left(đpcm\right)\\ f,\Delta=4\left(m-1\right)^2-4\left(-3-m\right)=4m^2-8m+4+12+4m\\ \Delta=4m^2-4m+16=\left(2m-1\right)^2+15>0\left(đpcm\right)\)

Khánh Anh
Xem chi tiết
Exo Love Baek
Xem chi tiết
vo phi hung
7 tháng 5 2018 lúc 22:30

a)

 \(x^2-2\left(m+1\right)x+4m-m^2=0\)

Ta có : (a = 1 ; b = 2(m+1) ; b' = m + 1 ; c = 4m-m)

\(\Delta'=b'^2-ac\)

      =  \(\left(m+1\right)^2-1.\left(4m-m^2\right)\)

      =  m2 + 2m + 1   -4m +m2

     =  2m2   -2m + 1

     = 2 ( m-1)2     > 0 (phuong trinh luon co 2 nghien pb \(\forall m\)

 

Despacito
7 tháng 5 2018 lúc 22:41

a) có \(\Delta'=\left[-\left(m+1\right)\right]^2-4m+m^2\)

\(=m^2+2m+1-4m+m^2\)

\(=2m^2-2m+1\)

\(=2\left(m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+1\right)\)

\(=2\left(m-\frac{1}{2}\right)^2+\frac{1}{2}>0\forall m\)

\(\Rightarrow pt\) trên luôn có 2 nghiệm pb \(\forall m\)

b) ta có vi - ét \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=4m-m^2\end{cases}}\)

theo bài ra \(A=\left|x_1-x_2\right|\)

\(\Leftrightarrow A^2=\left(x_1-x_2\right)^2\)

\(\Leftrightarrow A^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(\Leftrightarrow A^2=4m^2+8m+4+4m^2-16m\)

\(\Leftrightarrow A^2=8m^2-8m+4\)

\(\Leftrightarrow A^2=8\left(m^2-m+\frac{1}{2}\right)\)

\(\Leftrightarrow A^2=8\left(m-\frac{1}{2}\right)^2+2\ge2\)

dấu "=" xảy ra \(\Leftrightarrow m-\frac{1}{2}=0\Leftrightarrow m=\frac{1}{2}\)

vậy MIN A^2 = \(2\Leftrightarrow m=\frac{1}{2}\)

Phan Bá Quân
Xem chi tiết
Lizy
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 1 2024 lúc 22:27

\(x^2-2\left(m-1\right)x-2m=0\)

\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)

\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

 

Nguyễn Thị Bích Ngọc
Xem chi tiết