Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 3 2018 lúc 8:26

Chọn B.

Ta có:

a(a2 – c2) = b(b2 – c2) a3 – ac2 = b3 – bc2

a3 – b3 = ac2 – bc2

(a – b)(a2 + ab + b2) = c2(a – b)

a2 + ab + b2 = c2

ab = c2 – a2 – b2

Ta lại có: 

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 4 2021 lúc 17:48

Giả thiết tương đương: 

\(a^4+b^4+c^4+2b^2c^2=2a^2\left(b^2+c^2\right)+2b^2c^2\)

\(\Leftrightarrow a^4+\left(b^2+c^2\right)^2=2a^2\left(b^2+c^2\right)+2b^2c^2\)

\(\Leftrightarrow\left(b^2+c^2-a^2\right)^2=2b^2c^2\)

\(\Leftrightarrow b^2+c^2-a^2=\pm\sqrt{2}bc\)

\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\pm\sqrt{2}bc}{2bc}=\pm\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}A=45^0\\A=135^0\end{matrix}\right.\)

Minh Thư
Xem chi tiết

\(\left(a+b+c\right)\left(a+b-c\right)=3ab\)

\(\Leftrightarrow\left(a+b\right)^2-c^2=3ab\)

\(\Leftrightarrow a^2+b^2+2ab-c^2=3ab\)

\(\Leftrightarrow a^2+b^2-c^2=ab\)

\(\Leftrightarrow\dfrac{a^2+b^2-c^2}{2ab}=\dfrac{1}{2}\)

\(\Rightarrow cosC=\dfrac{a^2+b^2-c^2}{2ab}=\dfrac{1}{2}\)

\(\Rightarrow C=60^0\)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
19 tháng 5 2017 lúc 15:19

Tích vô hướng của hai vectơ và ứng dụng

An Pham
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết
vu thien
Xem chi tiết
Đinh Đức Hùng
12 tháng 3 2017 lúc 14:47

\(a^3-b^3-c^3=3abc\)

\(\Rightarrow a^3-b^3-c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Mà \(a+b+c\ne0\) (độ dài 3 cạnh của 1 tam giác)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\left(a-b\right)^2=0;\left(b-c\right)^2=0;\left(c-a\right)^2=0\)

\(\Rightarrow a=b=c\)

Do đó tam giác ABC là tam giác đều 

tth_new
13 tháng 3 2017 lúc 9:13

a = b = c nha!

tk nha

tth_new
13 tháng 3 2017 lúc 9:20

Tam giác ABC là tam giác đều

Nguyễn Nhất Linh
Xem chi tiết
Linh Kẹo
9 tháng 8 2016 lúc 10:38

TRỜI ! MỘT BÀI TOÁN BÙ ĐẦU BÙ ÓC

Hùng Nguyễn
11 tháng 8 2016 lúc 12:04

bài này lóp 7 hoc rù nhung quyen lop 7 nhình học giỏi lám đó

Đặng Phương Linh
23 tháng 11 2017 lúc 21:11

1.Cho tam giác ABC có số đo góc A,góc B,góc C tỉ lệ nghịch vs 3;4;6.Tính số đo các góc của tam giác ABC.

2.Cho tam giác ABC có số đo góc A,góc B,góc C tỉ lệ thuận vs 3;4;5.Tính số đo các góc của tam giác ABC.

Phan uyển nhi
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 4 2021 lúc 21:59

\(\dfrac{A}{2}+\dfrac{B}{2}=\dfrac{\pi}{2}-\dfrac{C}{2}\Rightarrow tan\left(\dfrac{A}{2}+\dfrac{B}{2}\right)=tan\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)\)

\(\Rightarrow\dfrac{tan\dfrac{A}{2}+tan\dfrac{B}{2}}{1-tan\dfrac{A}{2}tan\dfrac{B}{2}}=cot\dfrac{C}{2}=\dfrac{1}{tan\dfrac{C}{2}}\)

\(\Rightarrow tan\dfrac{A}{2}.tan\dfrac{C}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}=1-tan\dfrac{A}{2}tan\dfrac{B}{2}\)

\(\Rightarrow tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}=1\)

Ta có:

\(tan\dfrac{A}{2}+tan\dfrac{B}{2}+tan\dfrac{C}{2}\ge\sqrt{3\left(tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}\right)}=\sqrt{3}\)

Dấu "=" xảy ra khi và chỉ khi \(A=B=C\) hay tam giác ABC đều