Tìm các số nguyên tố p và q thoả mãn p^2+pq+q^2 là luỹ thừa cơ số 3
Tìm các số nguyên tố p và q thỏa mãn p^2 + pq + q^2 là lũy thừa cơ số 3.
Tìm các số nguyên tố p và q thỏa mãn p2 + pq + q2 là lũy thừa cơ số 3.
tìm các số nguyên tố p và q thỏa mãn p2 + pq + q2 là lũy thừa cơ số 3
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
tìm tất cả các cặp số nguyên tố p,q thỏa mãn các số 5p + q và pq + 7 đều là số nguyên tố
TÌm các cặp số nguyên tố p và q thỏa mãn 7q+p và pq+11 đều là số nguyên tố
Tìm tất cả các cặp số nguyên tố p,q thỏa mãn các số 5p + q và pq + 7 đều là số nguyên tố.
Làm giúp mk nhá
Dễ thấy pq+7 là số lẻ \(\Rightarrow\)pq chẵn\(\Rightarrow\)p=2 hoặc q=2
th1: p=2\(\Rightarrow\)q=3,7
thử lại thấy chỉ có q=3 đúng.
th2: q=2
neu p=2 thi 5p+q khong phai so nguyen to
neu p=3 thi ca hai thoa man
neu p>3 thi p co dang 3k+1;3k+2
(lam tiep...)
tìm các số nguyên tố p thỏa mãn 2p + p2 là số nguyên tố
Xét p=2
⇒ \(2^2+2^2=4+4=8\left(L\right)\)
Xét p=3
⇒ \(2^3+3^2=8+9=17\left(TM\right)\)
Xét p>3
⇒ p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẻ và p không chia hết cho 3 nên (p2–1)⋮3 và (2p+1)⋮3.
Do đó: 2p+p2là hợp số (L)
Vậy với p = 3 thì 2p + p2 là số nguyên tố.
Tìm số nguyên dương nhỏ nhất thỏa mãn các mãn các điều kiện sau: 1/2 số đó là 1 số chính phương, 1/3 số đó là lũy thừa bậc 3 của 1 số nguyên, 1/5 số đó là lũy thừa bậc 5 của 1 số nguyên