Tìm các số nguyên tố p và q thỏa mãn p^2 + pq + q^2 là lũy thừa cơ số 3.
Tìm các số nguyên tố p và q thỏa mãn p2 + pq + q2 là lũy thừa cơ số 3.
tìm các số nguyên tố p và q thỏa mãn p2 + pq + q2 là lũy thừa cơ số 3
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Tìm các số nguyên tố p,q thoả mãn :
(p^2-1)/q - (q^2+1)/p=3(p-q)
Cho 4 số nguyên dương a<b<c<d thoả mãn ad=bc.Giả sử a+d và b+c là các luỹ thừa của 2. Chứng minh a=1
Cho 4 số nguyên dương a<b<c<d
thoả mãn ad=bc.Giả sử a+d và b+c là các luỹ thừa của 2. Chứng minh a=1
Giả sử p,q là hai số nguyên tố thoả mãn đồng thời các điều kiện p>q>3, p - q =2 . Chứng minh rằng: p^3 + q^3 chia hết cho 36
Tìm các số nguyên tố p,q,r thỏa mãn: pq-2r2 =4