1+1=?
10+10=?
100+100=?
so sánh (100^10+1)/(100^10-1) với (10^100+1)/(10^100-3)
giúp mình bài này với ạ
đặt A=100^10+1/100^10-1
B=10^100+1/10^100-3
ta có:\(A=\frac{100^{10}+1}{100^{10}-1}=\frac{100^{10}-1+2}{100^{10}-1}=\frac{100^{10}-1}{100^{10}-1}+\frac{2}{100^{10}-1}=1+\frac{2}{100^{10}-1}\)
\(B=\frac{10^{100}+1}{10^{100}-3}=\frac{10^{100}-3+4}{10^{100}-3}=\frac{10^{100}-3}{10^{100}-3}+\frac{4}{10^{100}-3}=1+\frac{4}{10^{100}-3}=1+\frac{4}{100^{10}-3}\)
vì 10010-1>10010-3
=>\(\frac{4}{100^{10}-1}<\frac{4}{100^{10}-3}\)
=>A<B
Ta có:
\(\frac{100^{10}+1}{100^{10}-1}=\frac{100^{10}-1+2}{100^{10}-1}=\frac{100^{10}-1}{100^{10}-1}+\frac{2}{100^{10}-1}=1+\frac{2}{10^{20}-1}=1+\frac{4}{2.10^{20}-2}\)
\(\frac{10^{100}+1}{10^{100}-3}=\frac{10^{100}-3+4}{10^{100}-3}=\frac{10^{100}-3}{10^{100}-3}+\frac{4}{10^{100}-3}=1+\frac{4}{10^{100}-3}=1+\frac{4}{10^{100}-3}\)
Thấy: \(2.10^{20}-2<10^{100}-3\)
\(\Rightarrow\frac{4}{2.10^{20}-1}>\frac{4}{10^{100}-3}\)
\(\Rightarrow\frac{100^{10}+1}{100^{10}-1}>\frac{10^{100}+1}{10^{100}-3}\)
(1^100+2^100+...+10^100):(1^100+2^100+...+10^100)
Đúng ghi Đ,sai ghi S:
a)\(\dfrac{1}{10}\) gấp 10 lần \(\dfrac{1}{100}\) __ b)\(\dfrac{1}{100}\) gấp 10 lần \(\dfrac{1}{10}\)__
c)\(\dfrac{1}{100}\) gấp lên 10 lần được \(\dfrac{1}{1000}\)__ d) \(\dfrac{1}{100}\) giảm đi 10 lần được \(\dfrac{1}{1000}\)__
__ là chỗ điền nha.
A=\(\dfrac{100^{10+1}}{100^{10-1}}\)và B=\(\dfrac{100^{10-1}}{100^{10-3}}\)
Ta có :
\(A=\dfrac{100^{10}+1}{100^{10}-1}=\dfrac{100^{10}-1+2}{100^{10}-1}=\dfrac{100^{10}-1}{100^{10}-1}+\dfrac{2}{100^{10}-1}=1+\dfrac{2}{100^{10}-1}\)
\(B=\dfrac{100^{10}-1}{100^{10}-3}=\dfrac{100^{10}-3+2}{100^{10}-3}=\dfrac{100^{10}-3}{100^{10}-3}+\dfrac{2}{100^{10}-3}=1+\dfrac{2}{100^{10}-3}\)
\(\) Vì \(1+\dfrac{2}{100^{10}-1}< 1+\dfrac{2}{100^{10}-3}\Rightarrow A< B\)
So sánh :10010+1/10010-1 và 10010-1/10010-3
giúp mk vs!
Áp dụng a /b > 1 => a/b > a+m/b+m (a;b;m thuộc N*)
Ta có:
\(\frac{100^{10}-1}{100^{10}-3}>\frac{100^{100}-1+2}{100^{10}-3+2}\)
\(>\frac{100^{100}+1}{100^{10}-1}\)
Áp dụng a/b > 1 => a/b > a + m/b ( a; b; m thuộc N*
A=100^11-10/100^12-10 và B=100^10+1/100^11+1. Hãy so sánh A và B
So sánh:A=\(\dfrac{10^{100}+1}{10^{99} +1}\) và B=\(\dfrac{10^{101}+1}{10^{100}+1}\)
ta có:
1/10.A=10100+1/10(1099+1)
1/10.A=10100+1/10100+10
1/10.A=1-(9/10100+10)
1/10.B=10101+1/10(10100+1)
1/10.B=10101+1/10101+10
1/10.B=1-(9/10101+10)
vì(10101+10)>(10100+1)=> 9/10101+10 < 9/10100+10 => 1-(9/10101+10) > 1-(9/10100+10)
hay 1/10.A>1/10.B
=>A>B
ta có:
1/10.A=10100+1/10(1099+1)
1/10.A=10100+1/10100+10
1/10.A=1-(9/10100+10)
1/10.B=10101+1/10(10100+1)
1/10.B=10101+1/10101+10
1/10.B=1-(9/10101+10)
vì(10101+10)>(10100+1)=> 9/10101+10 < 9/10100+10 => 1-(9/10101+10) < 1-(9/10100+10)
hay 1/10.A<1/10.B
=>A<B
Đáp án dưới mới đúng nhé
vừa mình làm nhầm
So sánh: \(A=\frac{100^{10}+1}{100^{10}-1}\)và \(B=\frac{100^{10}-1}{100^{10}-3}\)
ta có:\(A=\frac{100^{10}+1}{100^{10}-1}=\frac{100^{10}-1+2}{100^{10}-1}=\frac{100^{10}-1}{100^{100}-1}+\frac{2}{100^{10}-1}=1+\frac{2}{100^{10}-1}\)
\(B=\frac{100^{10}-1}{100^{10}-3}=\frac{100^{10}-3+2}{100^{10}-3}=\frac{100^{10}-3}{100^{10}-3}+\frac{2}{100^{10}-3}=1+\frac{2}{100^{10}-3}\)
vì 10010-1>10010-3
\(\Rightarrow\frac{2}{100^{10}-1}<\frac{2}{100^{10}-3}\)
=>A<B
A=(1^100+2^100+…+10^100).(5^10-25^5)
B=(2^5+3^5+4^5).(1^2+2^2+…+100^2).(4^10-2^20)
so sánh A=\(\frac{100^{10}+1}{100^{10}-1}\) và B=\(\frac{100^{10}-1}{100^{10}-3}\)
Mình cần câu trả lời ngay bây giờ mong các bạn thông cảm
+> Ta đi chứng minh tính chất \(\frac{a}{b}>1\)thì \(\frac{a}{b}>\frac{a+c}{b+c}\)
Có\(\frac{a}{b}>1\Rightarrow a>b\)
\(\Rightarrow ac>bc\) \(\Rightarrow ac+ab>bc+ab\)\(\Rightarrow a\left(b+c\right)>b\left(a+c\right)\)\(\Rightarrow\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(1\right)\)
+> Aps dụng tính chất (1) vào b thức B ta có:
\(B=\frac{100^{10}-1}{100^{10}-3}>\frac{100^{10}-1+2}{100^{10}-3+2}=\frac{100^{10}+1}{100^{10}-1}\)
\(\Rightarrow B>\frac{100^{10}+1}{100^{10}-1}\)
\(\Rightarrow B>A\)
Vậy \(B>A\)