CM:
1)A^2=B^2+C^2
2)b^2=ab' ; c^2=ac'
3)h^2=b'.c'
4)a.h=b.c
5)1/h^2=1/b^2+1/c^2
Cho a, b, c >0 thỏa mãn: abc=1. CM: \(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)
Ta có : \(a^2+b^2\ge2ab\Rightarrow a^2+b^2-ab\ge ab\)
\(\Rightarrow\dfrac{1}{a^2-ab+b^2}\le\dfrac{1}{ab}=\dfrac{abc}{ab}=c\) ( do $abc=1$ )
Tương tự ta có :
\(\dfrac{1}{b^2-bc+c^2}\le a\)
\(\dfrac{1}{c^2-ab+a^2}\le b\)
Cộng vế với vế các BĐT trên có :
\(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)
Dấu "=" xảy ra khi $a=b=c$
\(VT=\dfrac{1}{a^2+b^2-ab}+\dfrac{1}{b^2+c^2-bc}+\dfrac{1}{c^2+a^2-ca}\)
\(VT\le\dfrac{1}{2ab-ab}+\dfrac{1}{2bc-bc}+\dfrac{1}{2ca-ca}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=\dfrac{a+b+c}{abc}=a+b+c\)
Dấu "=" xảy ra khi \(a=b=c=1\)
CM a/(ab+a+1)^2 +b/(bc+b+1)^2 +c/(ac+c+1)^2 >=1/(a+b+c)
CM a/(ab+a+1)^2 + b/(bc+b+1)^2 +c/(ac+c+1)^2 >= 1/(a+b+c)
a^2+b^2+c^2=1 cm ab/(c^2+1)+ac/(b^2+1)+bc/(a^2+1)<=3/4
cho a+b+c+d=4. cm: 1/ab +1/cd >=(a^2+b^2+c^2+d^2)/2
cho a,b tùy ý CM (a^2+b^2)/2 >= ab
cho a>0 CM a+1/a >=2
c CM x^2+y^2+z^2+3>=2
a) Ta có \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\frac{a^2+b^2}{2}\ge ab\)( chia 2 vế cho 2 )
b) \(\frac{a+1}{a}\)chưa lớn hơn hoặc bằng 2 đc , bạn thay a=2 vào thì 3/2<2
c) Ta có \(x^2\ge0\);\(y^2\ge0\);\(z^2\ge0\)
nên \(x^2+y^2+z^2\ge0\)
\(\Rightarrow x^2+y^2+z^2+3\ge3\)
Ta có \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\frac{a^2+b^2}{2}\ge ab\)
Cho a,b,c thỏa mãn a^2 + b^2 + c^2 =1 Cm: abc+2(1+a+b+c+ab+ac+bc) lớn hơn bằng 0
Vi a^2+b^2+c^2=1
=>-1=<a,b,c=<1
=>(1+a)(1+b)(1+c)>=0
=>1+abc+ab+bc+ca+a+b+c>=0 (1*)
Lại có (a+b+c+1)^2/2>=0
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca
]/2>=0
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1)
=>1+a+b+c+ab+bc+ca>=0 (2*)
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1
<=>a=0,b=0,c=-1 va cac hoan vi cua no
Vì a^2+b^2+c^2=1
=>-1=<a,b,c=<1
=>(1+a)(1+b)(1+c)>=0
=>1+abc+ab+bc+ca+a+b+c>=0 (1*)
Lại có (a+b+c+1)^2/2>=0
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca
]/2>=0
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1)
=>1+a+b+c+ab+bc+ca>=0 (2*)
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1
<=>a=0,b=0,c=-1 và các hoan vi của nó
Vì a^2+b^2+c^2=1
=>-1=<a,b,c=<1
=>(1+a)(1+b)(1+c)>=0
=>1+abc+ab+bc+ca+a+b+c>=0 (1*)
Lại có (a+b+c+1)^2/2>=0
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca
]/2>=0
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1)
=>1+a+b+c+ab+bc+ca>=0 (2*)
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1
<=>a=0,b=0,c=-1 và các hoan vi của nó
cho a,b,c thỏa mãn điều kiện a^2+b^2+c^2=1.cm abc+2(1+a+b+c+ab+ac+bc)>=0
Do: \(a^2+b^2+c^2=1\text{ nen }a^2\le1,b^2\le1,c^2\le1\)
\(\Rightarrow a\ge-1;b\ge-1;c\ge-1\)
\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)
\(\Rightarrow1+a+b+c+ab+bc+ca+abc\ge0\)
Cần C/m:
\(1+a+b+c+ab+bc+ca\ge0\)
Ta có:
\(1+a+b+c+ab+bc+ca\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+ab+bc+ca+a+b+c\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2+2\left(a+b+c\right)+2ab+2bc+2ca+abc\ge0\)
\(\Leftrightarrow\left(a+b+c\right)^2+2\left(a+b+c\right)+1\ge0\)
\(\Leftrightarrow\left(a+b+c+1\right)^2\ge0\left(\text{luon dung}\right)\)
=> ĐPCM
Bấm vào câu hỏi tương tự
hoặc lên Học24h
CM: 3(1 - a + a2)(1 - b + b2) \(\ge\)2(1 - ab + a2b2)
CM: 3(1 - a + a2)(1 - b + b2)(2 - c + c2) \(\ge\)1 + abc + a2b2c2
A) Cm:a^3-b^3= (a-b)(a^2+ab+b^2)
B) Cm: a^3+b^3=(a+b)(a^2-ab+b^2)
C) Cm: a^2-b^2=(a-b)(a+b)
\(a^3-b^3=\left(a-b\right).\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow\)\(a^3-b^3=a^3+a^2b+ab^2-a^2b-ab^2-b^3\)
\(\Leftrightarrow\)\(a^3-b^3=a^3-b^3\)
\(\Rightarrow\)\(đpcm\)
\(a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow\)\(a^3+b^3=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)
\(\Leftrightarrow\)\(a^3+b^3=a^3+b^3\)
\(\Rightarrow\)\(đpcm\)
\(a^2-b^2=\left(a-b\right).\left(a+b\right)\)
\(\Leftrightarrow\)\(a^2-b^2=a^2+ab-ab-b^2\)
\(\Leftrightarrow\)\(a^2-b^2=a^2-b^2\)
\(\Rightarrow\)\(đpcm\)