Biết \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\left(a;b;c\ne0\right)\)
CMR: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Biết: \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}.\left(a,b,c\ne0\right).CMR:\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\Leftrightarrow\frac{baz-cay}{a^2}=\frac{cbx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{baz-cay+cbx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
\(\Rightarrow bz=cy\Leftrightarrow\frac{y}{b}=\frac{z}{c}\)
\(\Rightarrow cx=az\Leftrightarrow\frac{x}{a}=\frac{z}{c}\)
\(\Rightarrow ay=bx\Leftrightarrow\frac{x}{a}=\frac{y}{b}\)
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Biết rằng:\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
CMR:x:y:z=a:b:c
Biết rằng \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\) .CMR: x : y : z = a : b : c
Biết rằng : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\) hãy chứng minh x:y:z=a:b:c
Biết rằng : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
Hãy CM x:y:z=a:b:c
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Leftrightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)
\(=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
\(\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\\\frac{a}{x}=\frac{b}{y}\end{cases}}\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{z}{c}\)
\(\Leftrightarrow x:y:z=a:b:c\)
Ta có: \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
=> \(\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)
=> \(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{c^2+b^2+c^2}=0\)
=> \(\hept{\begin{cases}\frac{bz-cy}{a}=0\\\frac{cx-az}{b}=0\\\frac{ay-bx}{c}=0\end{cases}}\) => \(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\) => \(\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\) => \(\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\\\frac{a}{x}=\frac{b}{y}\end{cases}}\) => \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)=> \(a:b:c=x:y:z\)
\(Cho:\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}.CMR:\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)
\(\Rightarrow\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{x}{a}=\frac{z}{c}\\\frac{y}{b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
* C1 :(bz - cy)/a = (abz - acy)/a2
(cx - az)/b = (bcx - abz)/b2
(ay - bx)/c = (acy - bcx)/c2
Mà (bz - cy)/a = (cx - az)/b = (ay - bx)/c
=>(abz - acy)/a2 = (bcx - abz)/b2 = (acy - bcx)/c2 = (abz - acy + bcx - abz + acy - bcx)/a2 + b2 + c2 = 0
=>(bz - cy)/a = (cx - az)/b = (ay - bx)/c = 0
=>bz - cy = cx - az = ay - bx = 0
*Xét bz - cy = 0
=>bz = cy
=>z/c = y/b
Chứng minh tương tự = >x/a = y/b ; x/a = z/c
=> x/a = y/b = z/c
*C2 :
(bz - cy)/a = (abz - acy)/ax
(cx - az)/by = (bcx - abz)/by
(ay - bx)/cz = (acy - bcx)/cz
Làm tương tự như C1
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
Suy ra: \(\frac{bxz-cxy}{ax}=\frac{cxy-azy}{bx}=\frac{azy-bxz}{cx}\). Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\frac{bxz-cxy}{ax}=\frac{cxy-azy}{bx}=\frac{azy-bxz}{cx}=\frac{\left(bxz-cxy\right)+\left(cxy-azy\right)+\left(azy-bxz\right)}{ax+bx+cx}\)
\(=\frac{\left(bxz-bxz\right)-\left(cxy-cxy\right)-\left(azy-azy\right)}{ax+by+cz}=\frac{0}{ax+by+cz}\)
Suy ra: \(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}\Leftrightarrow}\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\)
Áp dụng tính chất tỉ lệ thức ta được: \(\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{z}{c}=\frac{x}{a}\\\frac{x}{a}=\frac{y}{b}\end{cases}\Leftrightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}^{\left(đpcm\right)}}\)
biết rằng:\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\).hãy chứng minh :\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
áp dụng tính chất hai dãy tỉ số bằng nhau nha bạn
Biết \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\left(a,b,c\ne0\right)\). Chứng minh: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\) => \(\frac{a.\left(bz-cy\right)}{a^2}=\frac{b.\left(cx-az\right)}{b^2}=\frac{c.\left(ay-bx\right)}{c^2}\)
<=> \(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{cay-bcx}{c^2}\). Theo tính chất dãy tỉ số bằng nhau
=> \(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{cay-bcx}{c^2}=\frac{abz-acy+bcx-abz+cay-bcx}{a^2+b^2+c^2}=0\)
=> \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\) = 0
=> \(bz-cy=0\Rightarrow bz=cy\Rightarrow\frac{y}{b}=\frac{z}{c}\) (1)
\(cx-az=0\Rightarrow\frac{x}{a}=\frac{z}{c}\) (2)
Từ (1)(2) => \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Biết \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
CMR: x : y : z = a : b : c