Cho a, b, c là các số thực thỏa mãn \(a\ge4;b\ge5;c\ge6\) và \(a^2+b^2+c^2=90\)
Chứng minh \(a+b+c>16\)
cho các số thực a,b,c thỏa mãn \(a+2b+3c\ge4\) và \(a-b-3c\ge1\).CMR
\(a+b+c\ge3\)
cho a, b, c là các số thực thỏa mãn a, b, c > 0 và \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\). Chứng minh \(\frac{a+b}{2a-b}+\frac{b+c}{2c-b}\ge4\)
Theo giả thiết: \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{2}{\sqrt{ac}}\Leftrightarrow b^2\le ac\Leftrightarrow\frac{ac}{b^2}\ge1\)
Ta có: \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow b\left(a+c\right)=2ac\Leftrightarrow2ac-bc=ab\Leftrightarrow2a-b=\frac{ab}{c}\)\(\Rightarrow\frac{a+b}{2a-b}=\frac{a+b}{\frac{ab}{c}}=\frac{ac+bc}{ab}=\frac{c}{b}+\frac{c}{a}\)(1)
Tương tự: \(\frac{b+c}{2c-b}=\frac{a}{c}+\frac{a}{b}\)(2)
Cộng từng vế hai đẳng thức (1), (2) và áp dụng Cô - si, ta được: \(\frac{a+b}{2a-b}+\frac{b+c}{2c-b}\ge\frac{c}{b}+\frac{c}{a}+\frac{a}{c}+\frac{a}{b}\ge4\sqrt[4]{\frac{ca}{b^2}}\ge4\)
Đẳng thức xảy ra khi a = b = c
Cho a,b,c là các số thực dương thỏa mãn \(\frac{2b-c}{a}\ge4\). Chứng minh \(ax^2+bx+c=0\)luôn có nghiệm
Với các số thực dương a, b, c ta có:
\(\frac{2b-c}{a}\ge4\Leftrightarrow2b-c\ge4a\Leftrightarrow b\ge\frac{4a+c}{2}\)
\(\Leftrightarrow b^2\ge\frac{16a^2+8ac+c^2}{4}\Leftrightarrow b^2-4ac\ge\frac{16a^2+c^2}{4}>0\)
=> phương trình \(ãx^2+bx+c=0\) luôn có nghiệm
+) Nếu \(ac\le0\Rightarrow\)Phương trình có nghiệm
+) Nếu ac > 0\(\Rightarrow\)a và c cùng dấu
Từ giả thiết suy ra \(\frac{2b}{a}\ge\frac{c}{a}+4>0\Rightarrow\)a và b cùng dấu
\(\Rightarrow\)a, b, c cùng dấu. Vì thế ta chỉ cần xét a, b và c cùng dương là đủ
Với a, b, c cùng dương ta có :
\(\frac{2b}{a}\ge\frac{c}{a}+4\Leftrightarrow b\ge\frac{c+4a}{2}\Leftrightarrow b^2\ge\frac{c^2+8ac+16a^2}{4}\)
\(\Leftrightarrow b^2-4ac\ge\frac{c^2-8ac+16a^2}{4}=\frac{\left(c-4a\right)^2}{4}\ge0\)
\(\Delta\ge0\)nên phương trình luôn có nghiệm
Vậy phương trình \(ax^2+bx+c=0\)luôn có nghiệm (đpcm)
Cô Chi làm sai dòng 3 ạ!
Cho a, b là hai số thực dương thỏa mãn a +b = 1. Chứng minh rằng:\(\dfrac{2+\sqrt{2a}}{2-a}+\dfrac{2+\sqrt{2b}}{2-b}\ge4\)
Với mọi \(0< a< \dfrac{1}{2}\) ta có:
\(\left(\sqrt{2a}-1\right)^2\ge0\Rightarrow2a+1\ge2\sqrt{2a}\)
\(\Rightarrow1\ge2\sqrt{a}\left(\sqrt{2}-\sqrt{a}\right)\)
\(\Rightarrow\dfrac{1}{\sqrt{2}-\sqrt{a}}\ge2\sqrt{a}\)
Do đó:
\(\dfrac{2+\sqrt{2a}}{2-a}=\dfrac{2-a+a+\sqrt{2a}}{2-a}=1+\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{2}\right)}{\left(\sqrt{2}-\sqrt{a}\right)\left(\sqrt{2}+\sqrt{a}\right)}=1+\dfrac{\sqrt{a}}{\sqrt{2}-\sqrt{a}}\ge1+\sqrt{a}.2\sqrt{a}=2a+1\)
Tương tự:
\(\dfrac{2+\sqrt{2b}}{2-b}\ge2b+1\)
Cộng vế:
\(\dfrac{2+\sqrt{2a}}{2-a}+\dfrac{2+\sqrt{2b}}{2-b}\ge2a+1+2b+1=4\) (đpcm)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
1,cho các số thực a,b,c ko âm thỏa mãn : a+b+c=3. Tìm GTLN của biểu thức : Q= (a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2)
2,cho số thực \(a\ge4\).Tìm GTNN của biểu thức S= \(a+\frac{1}{a}\)
2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)
Áp dụng BĐT AM-GM ta có:
\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)
\(S=\frac{17}{4}\Leftrightarrow a=4\)
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?
\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)
\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)
Dấu "=" xảy ra khi a = 4
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
Cho a, b, c là các số thực thỏa mãn \(a\ge4\); \(b\ge5\); \(c\ge6\) Và \(a^2+b^2+c^2=90\).
Chứng minh: \(a+b+c\ge16\)
Từ giả thiết ta suy ra
(a-4)(a-9)+(b-5)(b-8)+(c-6)(c-7)\(\le\)0
⇔a2+b2+c2−13(a+b+c)+118≤0⇔a2+b2+c2−13(a+b+c)+118≤0
⇔a+b+c≥16
Dấu "=" xảy ra khi a=4,b=5,c=6
cho a;b;c là các số thực dương thảo mãn a+b+c=3.CMR:\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+\sqrt{abc}\ge4\)
Mình ko biết chắc đúng hết không,có gì mong bạn góp ý cho mình nha:
Ta có \(a+b+c=3\)
Áp dụng BĐT Cô-si ta có:
\(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow3\ge3\sqrt[3]{abc}\Leftrightarrow1\ge\sqrt[3]{abc}\)
\(\Leftrightarrow1\ge abc\)
Ta có:\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge3\sqrt[3]{\sqrt{\left(abc\right)^2}}=3\sqrt[3]{abc}=3\left(1\right)\)
Ta lại có \(\sqrt{abc}\ge\sqrt{1}=1\left(2\right)\)
Cộng \(\left(1\right)vs\left(2\right)\)lại ta có \(đpcm\)
Dấu \("="\)xảy ra khi \(a=b=c=1\)
xin lỗi,hình như bài này mình bị ngược giấu rồi
Cho a,b,c là các số thực dương thỏa mãn rằng \(a+b+c=3\) . Chứng minh rằng:
\(\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)^2\ge4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
Từ bất đẳng thức Cô si ta có:
\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)
\(\Rightarrow\)Ta cần chứng minh:
\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.
sai r bạn ơi ko biết còn đòi
Cho các số thực dương thỏa mãn: \(a+b+c\le2\)
CMR: \(P=a+b-2c-\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge4\). Dấu bằng xảy ra khi nào?