Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dinh huong
Xem chi tiết
Nguyễn Thành Đạt
Xem chi tiết
Kiệt Nguyễn
10 tháng 2 2021 lúc 21:15

Theo giả thiết: \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{2}{\sqrt{ac}}\Leftrightarrow b^2\le ac\Leftrightarrow\frac{ac}{b^2}\ge1\)

Ta có: \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow b\left(a+c\right)=2ac\Leftrightarrow2ac-bc=ab\Leftrightarrow2a-b=\frac{ab}{c}\)\(\Rightarrow\frac{a+b}{2a-b}=\frac{a+b}{\frac{ab}{c}}=\frac{ac+bc}{ab}=\frac{c}{b}+\frac{c}{a}\)(1)

Tương tự: \(\frac{b+c}{2c-b}=\frac{a}{c}+\frac{a}{b}\)(2)

Cộng từng vế hai đẳng thức (1), (2) và áp dụng Cô - si, ta được: \(\frac{a+b}{2a-b}+\frac{b+c}{2c-b}\ge\frac{c}{b}+\frac{c}{a}+\frac{a}{c}+\frac{a}{b}\ge4\sqrt[4]{\frac{ca}{b^2}}\ge4\)

Đẳng thức xảy ra khi a = b = c

Khách vãng lai đã xóa
Xem chi tiết
Nguyễn Linh Chi
7 tháng 9 2019 lúc 14:28

Với các số thực dương a, b, c ta có:

\(\frac{2b-c}{a}\ge4\Leftrightarrow2b-c\ge4a\Leftrightarrow b\ge\frac{4a+c}{2}\)

\(\Leftrightarrow b^2\ge\frac{16a^2+8ac+c^2}{4}\Leftrightarrow b^2-4ac\ge\frac{16a^2+c^2}{4}>0\)

=> phương trình \(ãx^2+bx+c=0\) luôn có nghiệm

Kiệt Nguyễn
15 tháng 4 2020 lúc 16:31

+) Nếu \(ac\le0\Rightarrow\)Phương trình có nghiệm

+) Nếu ac > 0\(\Rightarrow\)a và c cùng dấu

Từ giả thiết suy ra \(\frac{2b}{a}\ge\frac{c}{a}+4>0\Rightarrow\)a và b cùng dấu

\(\Rightarrow\)a, b, c cùng dấu. Vì thế ta chỉ cần xét a, b và c cùng dương là đủ

Với a, b, c cùng dương ta có :

\(\frac{2b}{a}\ge\frac{c}{a}+4\Leftrightarrow b\ge\frac{c+4a}{2}\Leftrightarrow b^2\ge\frac{c^2+8ac+16a^2}{4}\)

\(\Leftrightarrow b^2-4ac\ge\frac{c^2-8ac+16a^2}{4}=\frac{\left(c-4a\right)^2}{4}\ge0\)

\(\Delta\ge0\)nên phương trình luôn có nghiệm

Vậy phương trình \(ax^2+bx+c=0\)luôn có nghiệm (đpcm)

Khách vãng lai đã xóa
Inequalities
15 tháng 4 2020 lúc 16:34

Cô Chi làm sai dòng 3 ạ!

Khách vãng lai đã xóa
Thị Thiệm Lê
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 2 2022 lúc 17:21

Với mọi \(0< a< \dfrac{1}{2}\) ta có:

\(\left(\sqrt{2a}-1\right)^2\ge0\Rightarrow2a+1\ge2\sqrt{2a}\)

\(\Rightarrow1\ge2\sqrt{a}\left(\sqrt{2}-\sqrt{a}\right)\)

\(\Rightarrow\dfrac{1}{\sqrt{2}-\sqrt{a}}\ge2\sqrt{a}\)

Do đó:

\(\dfrac{2+\sqrt{2a}}{2-a}=\dfrac{2-a+a+\sqrt{2a}}{2-a}=1+\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{2}\right)}{\left(\sqrt{2}-\sqrt{a}\right)\left(\sqrt{2}+\sqrt{a}\right)}=1+\dfrac{\sqrt{a}}{\sqrt{2}-\sqrt{a}}\ge1+\sqrt{a}.2\sqrt{a}=2a+1\)

Tương tự:

\(\dfrac{2+\sqrt{2b}}{2-b}\ge2b+1\)

Cộng vế:

\(\dfrac{2+\sqrt{2a}}{2-a}+\dfrac{2+\sqrt{2b}}{2-b}\ge2a+1+2b+1=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)

le bao son
Xem chi tiết
kudo shinichi
9 tháng 12 2018 lúc 17:14

2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)

Áp dụng BĐT AM-GM ta có:

\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)

\(S=\frac{17}{4}\Leftrightarrow a=4\)

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

tth_new
9 tháng 12 2018 lúc 19:15

kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?

\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)

\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)

Dấu "=" xảy ra khi a = 4

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

Fire Sky
Xem chi tiết

Từ giả thiết ta suy ra 

(a-4)(a-9)+(b-5)(b-8)+(c-6)(c-7)\(\le\)0

⇔a2+b2+c2−13(a+b+c)+118≤0⇔a2+b2+c2−13(a+b+c)+118≤0

⇔a+b+c≥16

Dấu "=" xảy ra khi a=4,b=5,c=6

Nguyễn Thiều Công Thành
Xem chi tiết
nguyễn minh ngọc
4 tháng 9 2017 lúc 21:45

5-6..thui..=>ko..hiểu

Trần Hữu Ngọc Minh
4 tháng 9 2017 lúc 22:51

Mình ko biết chắc đúng hết không,có gì mong bạn góp ý cho mình nha:

Ta có \(a+b+c=3\)

Áp dụng BĐT Cô-si ta có:

\(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow3\ge3\sqrt[3]{abc}\Leftrightarrow1\ge\sqrt[3]{abc}\)

\(\Leftrightarrow1\ge abc\)

Ta có:\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge3\sqrt[3]{\sqrt{\left(abc\right)^2}}=3\sqrt[3]{abc}=3\left(1\right)\)

Ta lại có \(\sqrt{abc}\ge\sqrt{1}=1\left(2\right)\)

Cộng \(\left(1\right)vs\left(2\right)\)lại ta có \(đpcm\)

Dấu \("="\)xảy ra khi \(a=b=c=1\)

Trần Hữu Ngọc Minh
4 tháng 9 2017 lúc 23:01

xin lỗi,hình như bài này mình bị ngược giấu rồi

Trần Nguyễn Ngọc Hưng
Xem chi tiết
Nguyễn Đăng Nhân
19 tháng 2 2022 lúc 17:24

Từ bất đẳng thức Cô si ta có:

\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)

\(\Rightarrow\)Ta cần chứng minh:

\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.

Khách vãng lai đã xóa
Nguyễn Minh Thư
21 tháng 2 2022 lúc 14:38

sai r bạn ơi ko biết còn đòi

Khách vãng lai đã xóa
Guyn
Xem chi tiết