cho \(a\ge4;b\ge5;c\ge6\) thỏa mãn \(a^2+b^2+c^2=90\)
tìm min \(P=a+b+c\)
\(Cho\)\(a\ge4,b\ge5,c\ge6\),\(a^2+b^2+c^2=90\)Chứng minh :\(a+b+c\ge16\)
Cho các số thực dương a, b, c thỏa mãn a + b + c = 3. Chứng minh rằng:\(\sqrt{a^2+3b^2}+\sqrt{b^2+3c^2}+\sqrt{c^2+3a^2}\ge6\)
Cho các số thực a,b,c>0 thỏa mãn: a+b+c=3 Chứng minh rằng:
N=\(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\ge6\)
cho các số thực a,b,c >0 thỏa mãn a+b+c=3 . chứng minh rằng N=\(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\ge6\)
cho a, b, c là các số thực thỏa mãn a, b, c > 0 và \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\). Chứng minh \(\frac{a+b}{2a-b}+\frac{b+c}{2c-b}\ge4\)
Cho các số thực dương a,b,c thỏa mãn a+b+c=3
Chứng minh rằng : \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(a^2+b^2+c^2\right)}{3}\ge5\)
cho các số thực dương a,b,c thỏa mãn \(a+b+c=6\). Chứng minh rằng:
\(\frac{b+c+5}{1+a}+\frac{c+a+4}{2+b}+\frac{a+b+3}{3+c}\ge6\)
Cho các số thực dương a,b,c thỏa mãn a2 + b2 + c2 = 3.
Chứng minh rằng : \(\frac{a^2b^2+7}{\left(a+b\right)^2}+\frac{b^2c^2+7}{\left(b+c\right)^2}+\frac{c^2a^2+7}{\left(c+a\right)^2}\ge6\)