\(\left\{{}\begin{matrix}a\ge4\\b\ge5\end{matrix}\right.\) \(\Rightarrow a^2+b^2\ge16+25=41\Rightarrow c^2=90-\left(a^2+b^2\right)\le49\Rightarrow c\le7\)
Tương tự: \(b=\sqrt{90-\left(a^2+c^2\right)}\le\sqrt{90-\left(4^2+6^2\right)}=\sqrt{38}\)
\(a\le\sqrt{90-\left(5^2+6^2\right)}=\sqrt{29}\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-4\right)\left(a-9\right)\le0\\\left(b-5\right)\left(b-8\right)\le0\\\left(c-6\right)\left(c-7\right)\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}13a\ge a^2+36\\13b\ge b^2+40\\13c\ge c^2+42\end{matrix}\right.\)
\(\Rightarrow13\left(a+b+c\right)\ge a^2+b^2+c^2+118=208\)
\(\Rightarrow a+b+c\ge16\)
\(P_{min}=16\) khi \(\left(a;b;c\right)=\left(4;5;7\right)\)
a>=4,b>=5,c>=6
=>a+b+c>=4+5+6>=15
hay P>=15