cho tam giac abc vuong tai a,goc b co so do=60 do.ve ah vuong voi bc
a)so sanh ab va ac ; bh va hc
b)lay d thuoc tia doi cua tia ha sao cho hd=ha .chung minh rang hai tam giac ahc va dhc bang nhau
c)tinh so do goc bdc
cho tam giac abc vuong tai a co b=60 do.ve ah vuong goc voi bc tai h. a,tinh so do goc hab.b,tren canh ac lay diem d sao cho ad=ah.goi i la trung diem cua canh hd.chung minh tam giac ahi=tam giac adi
cho tam giac ABC vuong tai A co AB<AC. ke AH vuong goc voi BC. lay diem D tren AC sao cho AD=AB.ke DE va DK lan luot vuong goc BC va H
a;so sanh do dai BH va AK
b;tinh so do goc HAE
Tam giac ABC nhon co AB < AC . Ke AH vuong goc voi BC tai H . Ve phia ngoai tam giac ABC ve doan thang BD vuong goc voi AB , BD = AB va CE vuong goc voi AC , CE = AC . Ke DM vuong goc voi duong thang BC tai M va EN vuong goc voi duong thang BC tai N
1, So sanh goc DBM voi goc BAH , goc ECN voi goc CAH
2, Chung minh : DM = BH va EN = CH
cho tam giac ABC co AB=AB,goc B=goc C.Ke BD vuong goc voi AC va oe CE vuong goc voi AB.Hai doan thang BD va CE cat nhau tai I a)C/m tam giac BDC=tam giac CEB.b)so sanh goc IBE va goc ICD.c) duong thang AI cat BC tai trung diem H.c/m AI vuong goc voi BC
Bài dễ:
Vẽ hình ra bạn( sửa lại cái đề là AB=AC)
a, Ta có: góc B = góc C có chung cạnh BC
E=D=90o
Do đó tg BDC= tg CEB
b, kí hiệu góc B1 ở trên B2 ở dưới; bên góc C cũng vậy
Ta có : gB=gC; gB2=gC2;
gB=gB1+gB2; gC=gC1+gC2;
Do đó gB1=gB2(dpcm)
c, Vì ABC là tgiac cân và AI cắt BC tại trung điểm H
Nên AH vuông góc vs BC hay AI vuông góc vs BC
---end---
Bạn giải thích rõ cho mình câu c được không
cho tam giac ABC co goc ACB bang 60 do .
a) ve tam giac ABC
b) hai tia phan giac cua goc ABC va ACB cat nhau tai I . Qua I ve duong thang song song Bc , duong thang nay cat cac duong thang AB va AC tai D v E .Tinh so do goc ACI va goc CIE
c) So sanh 2 goc DIB va ABI
d) Qua A ke AH vuong goc voi BC tai H , qua C ke CK vuong goc voi DE tai K .Giai thic vi sao AH song song voi CK
e) tinh so do goc CAH
GIAI NHANH GIUM MINH NHA!!!MINH DANG CAN GAP ...
a) Tự vẽ
b) Vì CI là phân giác ACB
=> ACI = BCI = \(\frac{60°}{2}\)= 30°
Vì IE // BC (gt)
=> ICB = EIC = 30° ( so le trong)
d) Vì DE//BC (gt)
=> AED = ACB = 60° ( đồng vị)
Xét ∆AIE ta có :
AIE + AEI + IAE = 180°
=> IAK = 180° - 90° - 60° = 30°
Ta có :
AEI = KEC = 60° ( đối đỉnh)
Xét ∆EKC ta có :
EKC + KCE + KEC = 180°
=> KCE = 180° - 90° - 60° = 30°
=> EAI = KCE = 30°
Mà 2 góc này ở vị trí so le trong
=> AH//KC
e) Xét ∆AHC ta có :
ACH + CAH + AHC = 180°
=> CAH = 180° - 90° - 60° = 30°
pham vu anh tuan oi ban co the ve hinh va viet gia thiet cho mik dc ko .lm on!!!
GT : ∆ABC có ACB = 60°
Tia phân giác ABC , ACB cắt nhau tại I
Qua I vẽ đường thẳng //BC cắt AB tại D cắt AC tại E
AH\(\perp\)BC
CK \(\perp\)DE
KL : Tính ACI , CIE
So sánh DIB và ABI
AH//CK
Tính CAH
cho tam giac ABC co AB< AC co 3 goc nhon . Ke AH vuong goc BC tai H . Ve ra phia ngoai tam giac ABC cac doan thang BD vuong goc AB , BD = AB ; CE vuong goc AC , CE= AC . Ke DM vuong goc BC tai M ; EN vuong goc BC tai N
a, so sanh :goc DBM va goc BAH ; goc ECN va goc CAH
b, chung minh DM = BH , EN = CH
ve hinh r chung minh theo truong hop 2 cgv
Cho tam giac ABC co goc B=60 do.Ve AH vuong goc voi BC(H thuoc BC).Ke tia AM vuong goc voi AH tai A(M va H khac phia bo AC).Ke tia AN sao cho N va H khac phia bo AB va goc NAB=60 do
a) Cm: AN//BC
b)Cm:3 điểm A;M;N thẳng hàng
c)Gia sư gốc BẮC =40 độ.tính số đo góc HẮC và BẤM
a, Ta có: \(\widehat{NAB}=\widehat{ABC}=60^0\)
Mà: Hai góc đang ở vị trí so le trong nên:
\(\Rightarrow AN//BC\) (1)
b, Ta có: \(\left\{{}\begin{matrix}AM\perp AH\\BC\perp AH\end{matrix}\right.\Rightarrow AM//BC\) (2)
Từ (1) và (2) suy ra: \(N,A,M\) thẳng hàng.
Xét \(\Delta ABH\) vuông tại H có:
\(\widehat{BAH}+\widehat{ABC}+\widehat{AHB}=180^0\) ( Định lí tổng 3 góc trong 1 \(\Delta\))
\(\Rightarrow\widehat{BAH}=180^0-\widehat{ABC}-\widehat{AHB}=180^0-60^0-90^0\)
\(\Rightarrow\widehat{BAH}=30^0\)
Lại có: \(\widehat{BAH}+\widehat{HAC}=\widehat{BAC}=40^0\left(gt\right)\)
\(\Rightarrow\widehat{HAC}=40^0-\widehat{BAH}=40^0-30^0\)
\(\Rightarrow\widehat{HAC}=10^0\)
Lại có: \(\widehat{NAB}+\widehat{BAM}=180^0\)(Kề bù)
\(\Rightarrow\widehat{BAM}=180^0-\widehat{NAB}=180^0-60^0\)
\(\Rightarrow\widehat{BAM}=120^0\)
Cho tam giac ABC can tai A co AD la duong trung tuyen
a)Chung minh tam giac ABD= tam gaic ACD va AD vuong goc voi BC
b)Cho AB=10cm,BC=16cm. Tinh do dai AD va so sanh cac goc cua tam giac ABC.
c) Ve duong trung tuyen CF cua tam giac ABC cat AD tai M. Tinh do dai AM.
d) Ve DH vuong goc AC tai H, tren canh AC va canh DC lan luot lay hai diem E,K sao cho AE=AD va DK=DH. Chung minh: EK vuong goc voi BC
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
cho tam giac ABC vuong tai A, co AB=4, AC=5
a) Hay so sanh so do goc B va goc C cua tam giac ABC
b)tia phan giac cua goc ABC cat canh AC tai D. Ke DM vuong goc voi BC tai M chung minh tam giac ABM=tam giac MBD
c)Hai tia MD va BÂct nhau tai E . tia BD cat EC tai N . Chung minh goc BNC=90o
d) Goi K la trung diem cua DE . Chung Minh CK=3/4 EC