CHO \(a^3-3ab^2=2;b^3-3a^2b=-11\)
Tính \(a^2+b^2\)
CMR :1,a2+b2=<a+b>2-2ab
2,a3+b3=<a+b>3-3ab.<a+b>
3,a3-b3=<a-b>3+3ab.<a+b>
Cho :a+b=1
Tính :A=a3+b3+3ab
2
Ta có:
VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)
=a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)
=a3+b3=VT(dpcm)
1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)
a,Cho a3-3ab2=5 và b3-3a2b=10.Hãy tính E-a2+b2
b,Cho a3-3ab2=2;b3-3a2b=11.Tính P=a2+b2
c,Cho a3+3a2b=6 và b3+3ab2=3.Tính giá trị của biểu thức K=a2-b2
cho a^3-3ab^2=2; b^3-3a^2=-11. Tính a^3+b^3
cho a-b=2.cmr a^3-b^3+2(4+3ab)
Cm 2 vế bằng nhau
a)(x+y)^3-(x-y)^3=2y(3x^2+y^2)
b)a^3+b^3=(a+b)^3 -3ab(a+b)
c)a^3-b^3=(a-b^3)+3ab(a-b)
Nhanh lên mik tick cho nhé!(`・ω・´)
cmr (a+b)^3=a^3-a^2b+3ab^2-b^3 ; (a-b)^3= a^ - 3a^2b+3ab^2-b^3 ;
Cho a, b thỏa mãn a3-3ab2=\(\sqrt{15}\)
b3-3ab2=7. Tính Q=a2+b2
Cho a^3 - 3ab^2 = 5 và b^3 - 3a^2b =10 . TÍnh S=a^2 +b^2
Ta có: (a3 - 3ab2) 2 = a6 - 6a4b2 + 9a2b4 = 25
(b3 - 3a2b)2 = b6 - 6a4b2 + 9a4b2 = 100
⇒ (a3 - 3a2b)2 - (b3 - 3a2b)2 = a6 - 6a4b2 + 9a2b4 + b6 - 6a2b4 + 9a4b2 = 125
⇔ a6 + 3a4b2 = 3a2b4 + b6 = 125
⇔ (a2 + b2)3 = 125
⇒ a2 + b2 = 5
Ta có: (a3 - 3ab2) 2 = a6 - 6a4b2 + 9a2b4 = 25
(b3 - 3a2b)2 = b6 - 6a4b2 + 9a4b2 = 100
⇒ (a3 - 3a2b)2 - (b3 - 3a2b)2 = a6 - 6a4b2 + 9a2b4 + b6 - 6a2b4 + 9a4b2 = 125
⇔ a6 + 3a4b2 + 3a2b4 + b6 = 125
⇔ (a2 + b2)3 = 125
⇒ a2 + b2 = 5
cho a^3 - 3ab^2=2, b^3 - 3a^2b = -11. Tính a^3 + b^3
Ta có (a3 - 3ab2)2 = a^6 - 6a^4b^2 + 9a^2b^4 = 4
(b^3 - 3a^2b)^2 = b^6 - 6a^2b^4 + 9a^4b^2 = 121
Cộng vế thep vế ta đựơc (a^2 + b^2)^3 = 125
=> a^2 + b^2 = 5
Thế vào 1 trong 2 cái đầu là giải ra
Cho a^3 - 3ab^2 = -2 và b^3 - 3a^2b = 11. Tính a^2 + b^2.
Giúp mik với
\(a^3-3ab^2=-2\)
\(\Rightarrow\left(a^3-3ab^2\right)^2=4\)
\(\Rightarrow a^6-6a^4b^2+9a^2b^4=4\left(1\right)\)
\(b^3-3a^2b=11\)
\(\Rightarrow\left(b^3-3a^2b\right)^2=121\)
\(\Rightarrow b^6-6a^2b^4+9a^4b^2=121\left(2\right)\)
\(\left(1\right)+\left(2\right)\Rightarrow a^6+3a^4b^2+3a^2b^4+b^6=125\)
\(\Rightarrow\left(a^2+b^2\right)^3=125\Rightarrow a^2+b^2=5\)