Chứng minh rằng:
ƯCLN(a;b)=ƯCLN(a;a+b)
cho ƯCLN(a,b)=1
chứng minh rằng:ƯCLN(a+b,a)=1
Chứng minh rằng:ƯCLN(2n+1;3n+1)=1
Gọi ƯCLN(2n+1; 3n+1) là d. Ta có:
2n+1 chia hết cho d => 6n+3 chia hết cho d
3n+1 chia hết cho d => 6n+2 chia hết cho d
=> 6n+3-(6n+2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(2n+1; 3n+1) = 1 (đpcm)
C/m rằng:ƯCLN(a,b,c)=ƯCLN\(\left(\frac{a+b}{2};\frac{b+c}{2};\frac{c+a}{2}\right)\)
(a,b,c là số lẻ)
Cho A= \(4+4^2+4^3+..........+4^{60}\)
a) Chứng minh A chia hết cho 4
b) Chứng minh A chia hết cho 5
c) Chứng minh A chia hết cho 21
a) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2+...+4^{59}\right)⋮4\)
b) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)=4.5+4^3.5+...+4^{59}.5=5\left(4+4^3+...+4^{59}\right)⋮5\)
c) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{58}\left(1+4+4^2\right)=4.21+4^4.21+...+4^{58}.21=21\left(4+4^4+...+4^{58}\right)⋮21\)
\(A=4+4^2+4^3+.....+4^{60}\)
\(A=\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+....4^{57}.\left(1+4+4^2\right)\)
\(A\)\(=21+4^3.21+...4^{57}.21\)
\(\Rightarrow A⋮4;21\)
ko chia hết cho 5
a:Ta có: \(A=4+4^2+4^3+...+4^{60}\)
\(=4\left(1+4+4^2+...+4^{59}\right)⋮4\)
b: Ta có: \(A=4+4^2+4^3+...+4^{60}\)
\(=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)\)
\(=5\cdot\left(4+4^3+...+4^{59}\right)⋮5\)
A) cho a>b,b>0.Chứng minh a/b + b/a ≥2
B) cho a<b.Chứng minh; -2a - 3 > -2b - 3
C) chứng minh: x2 + 2y2 + 2xy + 6y +9 > 0
D) cho a + 3 > b + 3.Chứng minh: -5a + 1 < -5b +1
a: \(\dfrac{a}{b}+\dfrac{b}{a}>=2\cdot\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2\)
b: a<b
=>-2a>-2b
=>-2a-3>-2b-3
c: =x^2+2xy+y^2+y^2+6y+9
=(x+y)^2+(y+3)^2>=0 với mọi x,y
d: a+3>b+3
=>a>b
=>-5a<-5b
=>-5a+1<-5b+1
Cho cân tại A. Kẻ . Gọi O là giao điểm của BD và CE.
a) Chứng minh
b) Chứng minh cân
c) Chứng minh ED // BC
d) Gọi M là trung điểm của BC. Chứng minh
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
ˆBADBAD^ chung
Do đó: ΔADB=ΔAEC
b: Ta có: ΔADB=ΔAEC
nên BD=CE
Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có
BC chung
CE=BD
Do đó:ΔEBC=ΔDCB
Suy ra: ˆOCB=ˆOBCOCB^=OBC^
hay ΔOBC cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
d: Ta có: ΔEBC vuông tại E
mà EM là đường trung tuyến
nên BC=2EM
Từ một điểm A nằm ngoài (O;R) vẽ 2 tiếp tuyến Á và AJ a) chứng minh ẠO nội tiếp b) Vẽ cát tuyến ADE, chứng minh AD.AE = AS.AS c) Gọi H là trung điểm SJ, chứng minh: O;A;H thẳng hàng d) Chứng minh: AD.AE = AH.AO e) Chứng minh DHOE nội tiếp
Bài 7: Cho tam giác ABC cân tại A. Vẽ .
a) Chứng minh .
b)Vẽ . Chứng minh tam giác AMN cân.
c) Chứng minh MN//BC.
=)) Yêu cầu vẽ gì ở đề bài với câu b v bạn cm gì ở phần a v đăng lại bài đi
(Vẽ hình và giải ạ) Cho tam giác ABC vuông tại A. Kẻ đường cao AH.
a) Chứng minh ΔABC đồng dạng ΔAHC
b) Chứng minh ΔABC đồng dạng ΔHBC
c) Chứng minh AH ² = HB . HC
d) Chứng minh AB ² = AH . BC
a,xét ΔABC và ΔAHC, có:
góc BAC=góc AHC(=90 độ)
góc C chung
=>ΔABC đồng dạng ΔAHC(g-g)