Tìm những số T sao cho f(x + T) với mọi x thuộc tập xác định của hàm số sau:
a) f(x) = sinx;
b) f(x) = tanx.
Cho hàm số f(x)=\(\frac{|x+1|+|x-1|}{|x+1|-|x-1|}\)
a. Tìm tập xác định của hàm số.
b.CMR: f(-x)= -f(x) với mọi x thuộc D
Tìm tập xác định của hàm số :
\(f\left(x\right)=\dfrac{sinx+1}{sinx-1}\)
ĐKXĐ:
\(sinx\ne1\Leftrightarrow\ne x\ne\dfrac{\pi}{2}+k2\pi\)
Tìm tập xác định của các hàm số sau:
a) \(f(x) = \sqrt { - 5x + 3} \)
b) \(f(x) = 2 + \frac{1}{{x + 3}}\)
a) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \( - 5x + 3 \ge 0,\)tức là khi \(x \le \frac{3}{5}.\)
Vậy tập xác định của hàm số này là \(D = ( - \infty ;\frac{3}{5}]\)
b) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \(x + 3 \ne 0,\)tức là khi \(x \ne - 3\)
Vậy tập xác định của hàm số này là \(D = \mathbb{R}\backslash \left\{ { - 3} \right\}\)
Tìm tập xác định của các hàm số sau:
a) \(f(x) = \sqrt {2x + 7} \)
b) \(f(x) = \frac{{x + 4}}{{{x^2} - 3x + 2}}\)
a) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \(2x + 7 \ge 0,\)tức là khi \(x \ge \frac{{ - 7}}{2}.\)
Vậy tập xác định của hàm số này là \(D = \left[ { - \frac{7}{2}; + \infty )} \right.\)
b) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \({x^2} - 3x + 2 \ne 0,\)tức là khi \(x \ne 2,x \ne 1.\)
Vậy tập xác định của hàm số này là \(D = \mathbb{R}\backslash \left\{ {1;2} \right\}\)
giá trị dương nhỏ nhất của biến x (theo raddian) không thuộc tập xác định của hàm số f(x)=1/(sinx+cosx) là
cho hàm số f(x) được xác định với mọi x thuộc r,thỏa mãn tính chất f(x)-3f(x+1)=2x^2+1.a)tính f(2).b)xác định công thức hàm số f(x)
Cho hàm số y = f(x) xác định trên tập số thực R và có đạo hàm f'(x) = (x - sinx)(x- m- 3)(x- \(\sqrt{9-m^2}\) )3 ∀x∈ R (m là tham số). Có bao nhiêu giá trị nguyên của m để hàm số y =f(x) đạt cực tiểu tại x = 0
\(f'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x-sinx=0\\x-m-3=0\\x-\sqrt{9-m^2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=m+3\\x=\sqrt{9-m^2}\end{matrix}\right.\)
Do hệ số bậc cao nhất của x dương nên:
- Nếu \(m=-3\Rightarrow f'\left(x\right)=0\) có nghiệm bội 3 \(x=0\) \(\Rightarrow x=0\) là cực tiểu (thỏa mãn)
- Nếu \(m=3\Rightarrow x=0\) là nghiệm bội chẵn (không phải cực trị, ktm)
- Nếu \(m=0\Rightarrow x=3\) là nghiệm bội chẵn và \(x=0\) là nghiệm bội lẻ, đồng thời \(x=0\) là cực tiểu (thỏa mãn)
- Nếu \(m\ne0;\pm3\) , từ ĐKXĐ của m \(\Rightarrow-3< m< 3\Rightarrow\left\{{}\begin{matrix}m+3>0\\\sqrt{9-m^2}>0\end{matrix}\right.\)
Khi đó \(f'\left(x\right)=0\) có 3 nghiệm pb trong đó \(x=0\) là nghiệm nhỏ nhất
Từ BBT ta thấy \(x=0\) là cực tiểu
Vậy \(-3\le m< 3\)
Cho hàm số y = f(x) xác định với mọi x thuộc Q và có tính chất f(x1) + f(x2) = f(x1+ x2) với mọi x1 x2 thuộc Q . CMR f(-x) = -f (x )
cho hàm số y = f(x) xác định với mọi x thuộc R . Biết rằng với mọi x ta có: f(x)+ 3.f(1/x) = x^2. tính f(2)
\(f\left(x\right)+3f\left(\frac{1}{x}\right)=x^2\)
Thế \(x=2\)ta được:
\(f\left(2\right)+3f\left(\frac{1}{2}\right)=4\)
Thế \(x=\frac{1}{2}\)ta được:
\(f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\)
Ta có hệ phương trình:
\(\hept{\begin{cases}f\left(2\right)+3f\left(\frac{1}{2}\right)=4\\3f\left(2\right)+f\left(\frac{1}{2}\right)=\frac{1}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}f\left(2\right)=-\frac{13}{32}\\f\left(\frac{1}{2}\right)=\frac{47}{32}\end{cases}}\)