cho a ,b lớn hơn hoặc bằng 0; a+b nhỏ hơn hoặc bằng 1 tìm min A=\(\dfrac{a}{1+b}+\dfrac{b}{1+a}+\dfrac{1}{a+b}\)
Cho a,b,c lớn hơn hoặc bằng 0. Chứng minh ( a+b )( b+c )( c+a ) lớn hơn hoặc bằng 8abc
ta có : \(a+b>=2\sqrt{ab};b+c>=2\sqrt{bc};c+a>=2\sqrt{ca}\)
=> (a+b)(b+c)(c+a)>=\(2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)
a. x chia hết cho 17 và 0 lớn hơn hoặc bằng x lớn hơn hoặc bằng 60
b. 12 chia hết cho x
c. x thuộc ư (30) và x lớn hơn hoặc bằng 0
d. x chia hết cho 7 và x lớn hơn hoặc bằng 50
Cho a lớn hơn hoặc bằng 0, b lớn hơn hoặc bằng 0 . Chứng minh bất đẳng thức Cauchy : \(\frac{a+b}{2}\)lớn hơn hoặc bằng \(\sqrt{ab}\)
Ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2=a-2\sqrt{ab}+b\ge0\)
<=>\(a+b\ge2\sqrt{ab}\)
Dấu ''='' xảy ra <=>\(\sqrt{a}-\sqrt{b}=0<=>\sqrt{a}=\sqrt{b}<=>a=b\)
Tick cho tui nha,bạn hiền
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
Cho a lớn hơn 0 và b lớn hơn 0. Chứng minh rằng
( 1/ a +1/b) ( a + b) lớn hơn hoặc bằng 4
\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\)
\(\Leftrightarrow1+\frac{b}{a}+\frac{a}{b}+1\ge4\)
\(\Leftrightarrow\frac{b^2+a^2}{ab}\ge2\)
Vì a > 0 và b > 0 \(\Rightarrow ab>0\)
Vậy \(\frac{b^2+a^2}{ab}\ge2\Leftrightarrow b^2+a^2\ge2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Vậy bất đẳng thức được chứng minh.
bài này có nhiều hướng đi lắm =))
\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\)
1. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)
=> \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge\frac{4}{a+b}\cdot\left(a+b\right)=4\). Dấu "=" xảy ra <=> a=b
2. Áp dụng bất đẳng thức AM-GM ta có : \(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\); \(a+b\ge2\sqrt{ab}\)
=> \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge2\sqrt{\frac{1}{ab}}\cdot2\sqrt{ab}=4\). Dấu "=" xảy ra <=> a=b
3. \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)=1+\frac{b}{a}+\frac{a}{b}+1\ge2+2\sqrt{\frac{b}{a}\cdot\frac{a}{b}}=2+2=4\)(AM-GM)
Dấu "=" xảy ra <=> a=b
a. x chia hết cho 17 và 0 lớn hơn hoặc bằng x lớn hơn hoặc bằng 60
b. 12 chia hết cho x
c. x thuộc ư (30) và x lớn hơn hoặc bằng 0
d. x chia hết cho 7 và x lớn hơn hoặc bằng 50
giúp mình với (tìm x)
a. x chia hết cho 17 và 0 lớn hơn hoặc bằng x lớn hơn hoặc bằng 60
b. 12 chia hết cho x
c. x thuộc ư (30) và x lớn hơn hoặc bằng 0
d. x chia hết cho 7 và x lớn hơn hoặc bằng 50
giúp mình với (tìm x)
a. x chia hết cho 17 và 0 lớn hơn hoặc bằng x lớn hơn hoặc bằng 60
b. 12 chia hết cho x
c. x thuộc ư (30) và x lớn hơn hoặc bằng 0
d. x chia hết cho 7 và x lớn hơn hoặc bằng 50
giúp mình với (tìm x)
Tìm các số tự nhiên x sao cho:
a/ x thuộc bội của 12 và 20 lớn hơn hoặc bằng x lớn hơn hoặc bằng 50
b/ x chia hết cho 15 và 0 lớn hơn x lớn hơn hoặc bằng 40
Sai đề câu a rồi bạn!
20 \(\ge\)x \(\ge\) 50
Không thể vì 20 < 50 mà?
Câu b cũng thế, 0 > x \(\ge\) 40 ???
cho a ∈ Z. chứng tỏ rằng a2 lớn hơn hoặc bằng 0; -a2 bé hơn hoặc bằng 0
CMR : a2 lớn hơn hoặc bằng 0
Nếu a là 0 thì a2 = 0
Nếu a ∈ N* thì a2 > 0
☛ Vậy a ∈ N thì a2 ≥ 0
CMR : -a2 bé hơn hoặc bằng 0
Nếu a là 0 thì -a2 = 0
Nếu a ∈ N* thì -a2 < 0
☛ Vậy a ∈ N thì -a2 ≤ 0
*Trường hợp 1: a≠0
Ta có: \(a^2=a\cdot a=\left(-a\right)\cdot\left(-a\right)\)
Vì hai số cùng dấu nhân với nhau luôn ra số dương nên \(a^2>0\forall a\ne0\)(1)
*Trường hợp 2: a=0
Ta có: \(a^2=0^2=0\)
Do đó, \(a^2=0\forall a=0\)(2)
Từ (1) và (2) suy ra \(a^2\ge0\forall a\)
\(-a^2\le0\forall a\)
1.Với a> hoặc bằng 1,b lớn hơn hoặc bằng 1 chứng minh (1/1+a^2)+ (1/1+b^2) lớn hơn hoặc bằng 2/1+ab
2.Với a > hoặc bằng 1,b lớn hơn hoặc bằng 1,c lớn hơn hoặc bằng 1 chứng minh (1/1+a^2) +(1/1+b^2)+ (1/1+c^2) lớn hơn hoặc bằng 3/1+abc
3.Cho a,b,c >0 và a< hoặc bằng 1, b/2+a < hoặc bằng 2, c/3+b/2+a < hoặc bằng 3.Tìm Min P=1/a +1/b + 1/c
Giusp e với ạ.Cần lắm ạ.