Cho tam giác MAB cân tại M nội tiếp đường tròn (O;R).Kẻ MH vuông góc với AB,MH cắt (O) tại N.Trên tia đối tia BA lấy điểm C .MC cắt (O) tại D ,ND cắt AB tại E.CMR: AC.BE=BC.AE
cho tam giác abc nội tiếp đường tròn (o), I là tâm đường tròn nội tiếp tam giác abc. AI cắt (o) tại M, c/m tam giác MIB cân
Cho đường tròn (O) và tiếp tuyến tại A của đường tròn đó. từ một điểm M bất kì trên tiếp tuyến này ta kẻ tiếp tuyến MB với (O).
a. c/m OAMB nội tiếp.
b. Gọi H là trực tâm của tam giác MAB. C/m OAHB là hình thoi.
c. Khi M di động trên tiếp tuyến A thì tâm đường tròn ngoại tiếp tam giác MAB chạy trên đường nào?
Cho tam giác MAB vuông tại M,MB<MA,kẻ MH vuông góc với AB (H thuộc AB).Đường tròn (O) đường kính MH cắt MA,MB lần lượt tại E và F (E,F khác M)
a) đường thẳng EF cắt đường tròn (O') ngoại tiếp tam giác MAB tại P và Q (P thuộc cung MB). Chứng minh tam giác MPQ cân
b)Gọi I là giao điểm thứ 2 của đường tròn (O) với (O') .Đường thẳng EF cắt đường thẳng AB tại K .Chứng minh M,I,K thẳng hàng
Cho tam giác ABC cân tại A nội tiếp đường tròn (O) , cạnh bên bằng b. Tính bán kính đường tròn nội tiếp tam giác
Cho tam giác MAB vuông tại M ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng
đề bài : Cho tam giác MAB vuông tại H ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng
đúng hog
a)Ta có: góc MFH=90(góc nội tiếp chắn nửa đường tròn)
góc MEH=90( ║ )
Xét tứ giác MEHF,ta có:
góc MFH=góc FME=góc MEH=90
⇒MEHF là hcn (tứ giác có 3 góc vuông)
b) Ta có góc MFE=góc MHE (cùng chắn cung ME)
mà góc MAB =góc MHE (cùng phụ góc HMA)
Suy ra: góc MBA=góc MFE
⇒tứ giác AEFB nội tiếp ( tứ giác có góc trong tại một đỉnh bằng góc ngoài tại đỉnh đối của đỉnh đó)
Cho tam giác ABC nội tiếp (O) . Tia phân giác góc A cắt đường tròn tại M, tia phân giác góc ngoài tại đỉnh A cắt đường tròn tại N . CM:
a) tam giác MBC cân
b) CM: O, M, N thẳng hàng
b) Vì AM và AN lần lượt là hai tia phân giác của hai góc trong và ngoài tại đỉnh A của ΔABC
nên AM và AN lần lượt là hai tia phân giác của hai góc kề bù
⇔\(\widehat{MAN}=90^0\)
Xét ΔAMN có \(\widehat{MAN}=90^0\)(cmt)
nên ΔAMN vuông tại A(Định nghĩa tam giác vuông)
Suy ra: A,M,N cùng nằm trên đường tròn đường kính NM(Định lí)
mà A,M,N cùng nằm trên (O)
nên MN là đường kính của đường tròn (O)
hay O,M,N thẳng hàng(đpcm)
1/ Từ một điểm M ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm)
a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn này
b/ Cho MO = 2R CMR tam giác MAB đều
2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn
3/ Cho nửa đường tròn (O) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By lần lượt tại E và F. CMR tứ giác AEMO là tứ giác nội tiếp
4/ Cho tam giác ABC cân tại A có góc A nhọn, đường vuông góc với AB tại A cắt đường thẳng B, C tại E. Kẻ EN vuông với EC gọi M là trung điểm BC. CMR tứ giác AMNE là tứ giác nội tiếp đường tròn
Giải giúp mk vs mk đang cần gấp
Bài 2:
ΔOBC cân tại O
mà OK là trung tuyến
nên OK vuông góc BC
Xét tứ giác CIOK có
góc CIO+góc CKO=180 độ
=>CIOK là tứ giác nội tiếp
Bài 3:
Xét tứ giác EAOM có
góc EAO+góc EMO=180 độ
=>EAOM làtứ giác nội tiếp
1. cho đường tròn (O) đường kính AB, lấy C bên ngoài đường tròn. Kẻ CD vuông góc AC tại C, và CD = AC. Nối AD cắt (O) tại M. Kẻ đường thẳng DB cắt (O) tại N.
a) cmr : ANCD là tứ giác nội tiếp. Xác định tâm và bán kính của đường tròn ngoại tiếp tứ giác ANCD.
b) cmr : \(\widehat{CND}\)= \(\widehat{CAD}\)và tam giác MAB là tam giác cân.
c) cmr : AB.AC = AM.AD.
Chiu thoi ! Kho qua ! Co ai giai duoc ko ?
- Đề bài chắc chắn đúng chứ bạn? Mình tưởng phải có điều kiện đặc biệt ràng buộc C thì tam giác MAB mới cân được chứ nhỉ?
cho tam giác ABC nhọn nội tiếp đường tròn (O). Hai đường cao AM ,BN cắt nhau tại H và cắt đường tròn (O) lần lượt tại D,E. chứng minh rằng
a. tứ giác HMCN nội tiếp đường tròn
b. CD=CE
c. tam giác BHD cân
a: góc HMC+góc HNC=180 độ
=>HMCN nội tiếp
b: góc CAD=góc NBC
=>1/2*sđ cung CD=1/2*sđ cung CE
=>CD=CE
c: góc BHM=góc BCN=1/2*sđ cung BA
góc BDH=1/2*sđ cung BA
=>góc BHD=góc BDH
=>ΔBHD cân tại B
Cho tam giác ABC đều nội tiếp đường tròn (O ;R). Điểm M nằm trên cung nhỏ AC. Hạ BK vuông góc với AM tại K. Đường thẳng BK cắt CM tại E. Nối BE cắt (O) tại N
a) chứng minh tam giác MAB cân tại M
b)Chứng minh: EN.EB=EM.EC
c)Cho BM=10, tính thể tích hình cầu có bán kính bằng MK
d)Tìm vị trí của M để tam giác MBE có chu vi lớn nhất