Từ một điểm M ở bên ngoài đường tròn (O;6cm) kẻ hai tiếp tuyến MN, MP với đường tròn (N;P€(O)) và cát tuyến MAB của (O) sao cho AB=6cm
Từ một điểm M cố định ở bên ngoài đường tròn (O), kẻ một tiếp tuyến MT và một cát tuyến MAB của đường tròn đó. Cho MT = 20cm ,MB = 50cm,tính bán kính đường tròn
Gọi bán kính của đường tròn (O) là R
Ta có:MB=MA+AB = MA + 2R
Suy ra: MA =MB – 2R
Ta lại có: M T 2 = MA.MB (cmt)
Suy ra: M T 2 = (MB- 2R).MB = M B 2 – 2R.MB
Cho đường tròn (O) và một điểm M ở bên ngoài đường tròn. Từ M kẻ tiếp tuyến MA và cát tuyến MBC với đường tròn. CMR: \(MA^2=MB.MC\)
xét tam giác MCA và tam giác MAB có C1 = MAB ( 2 góc cùng chắn cung AB )
góc M chung
=> tam giác MCA đồng dạng tam giác MAB (g-g )
=> MA2 = MB.MC
Từ một điểm a ở bên ngoài đường tròn tâm O,kẻ hai tiếp tuyến AB,AC với đường tròn này
Cho đường tròn tâm (O) cố định . Từ một điểm A cố định ở bên ngoài đường tròn (O) kẻ các tiếp tuyến AM và An với đường tròn ( M và N là các tiếp điểm ) đường thẳng qua A cắt đường tròn tâm (O) tại hai điểm B và C ( B nằm giữa A và C ) gọi I là trung điểm BC . a, chứng minh tứ giác amon nội tiếp.
b, gọi k là giao điểm của MN và BC . chứng minh tam giác AKM đồng dạng tam giác AMI và AK.AI=AB.AC
Cho đường tròn tâm (O) cố định . Từ một điểm A cố định ở bên ngoài đường tròn (O) kẻ các tiếp tuyến AM và An với đường tròn ( M và N là các tiếp điểm ) đường thẳng qua A cắt đường tròn tâm (O) tại hai điểm B và C ( B nằm giữa A và C ) gọi I là trung điểm BC . a, chứng minh tứ giác amon nội tiếp. b, gọi k là giao điểm của MN và BC . chứng minh tam giác AKM đồng dạng tam giác AMI và AK.AI=AB.AC
a: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
b: Xét ΔAKM và ΔAMI có
góc AMK=góc AIM
góc MAK chung
=>ΔAKM đồng dạng với ΔAMI
=>AK/AM=AM/AI
=>AM^2=AI*AK
Xét ΔABM và ΔAMC có
góc AMB=góc ACM
góc BAM chung
=>ΔABM đồng dạng với ΔAMC
=>AB/AM=AM/AC
=>AM^2=AB*AC=AK*AI
Cho đường tròn O từ điểm A bên ngoài đường tròn, kẽ tiếp tuyến AB, AC đường thẳng qua C // AB cắt đường tròn ở D, AD cắt đường tròn O ở M, CM cắt AB ở N a, góc BAD = góc ACN b, AN2 = NM* NC
a: góc ACN=1/2*sđ cung MC
góc BAD=góc MDC=1/2*sđ cung MC
=>góc ACN=góc BAD
b: Xét ΔNAM và ΔNCA có
góc NAM=góc NCA
góc N chung
=>ΔNAM đồng dạng với ΔNCA
=>NA/NC=NM/NA
=>NA^2=NM*NC
Cho đường tròn (O) điểm M nằm bên ngoài đường tròn, từ M kẻ tiếp tuyến MA (A là tiếp điểm) và cát tuyến MBC tới đường tròn, Phân giác của góc BAC cắt BC ở D, cắt đường tròn ở E. Cm
a, MA=MD
b, AD.AE=AC.AB
Cho đường tròn (O; R), từ điểm M ở bên ngoài đường tròn kẻ hai tiếp tuyến MB và MC ( B và C là các tiếp điểm ). Gọi H là giao điểm của MO và BC.
1) Chứng minh H là trung điểm của BC.
2) Chứng minh bốn điểm M , B , O , C cùng nằm trên một đường tròn.
3) Vẽ đường kính BD của đường tròn (O ; R), qua O vẽ đường thẳng (d) vuông góc với BD, (d) cắt MC và DC lần lượt tại K và E.
a) Chứng minh ME = R.
b) Tìm quỹ tích của điểm K khi điểm M di động và OM = 2R.
2: Xét tứ giác MBOC có
\(\widehat{MBO}+\widehat{MCO}=180^0\)
Do đó: MBOC là tứ giác nội tiếp
a) Xét \(\Delta BMT\) và \(\Delta TMA\) có:
\(\widehat{M}\) chung
\(\widehat{B}=\widehat{MTA}\) (cùng chắn \(\stackrel\frown{AT}\))
\(\Rightarrow\Delta BMT\sim\Delta TMA\)
\(\Rightarrow\dfrac{MT}{MA}=\dfrac{MB}{MT}\Rightarrow MT^2=MA.MB\left(\text{Đ}PCM\right)\)