Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hello hello
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 4 2021 lúc 21:43

a) Xét tứ giác OAMC có 

\(\widehat{OAM}\) và \(\widehat{OCM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OCM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OAMC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Lê Thị Tuyết
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 6 2023 lúc 22:00

a: góc OAM+góc OCM=180 độ

=>OAMC nội tiếp

b: CE//BD

=>góc AKM=góc AEC=góc ACM

=>AKCM nội tiếp

=>A,K,C,M cùng nằm trên 1 đường tròn

=>góc OKM=90 độ

=>K là trung điểm của BD

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 3 2018 lúc 1:59

Tia MB cắt đoạn thẳng AO tại điểm B nằm giữa A và O nên tia MB nằm giữa hai tia MA, MO (hay tia MB nằm giữa hai tia MA, MN).

Vì tia MB nằm giữa hai tia MA, MN nên tia MB cắt đoạn thẳng AN tại điểm C nằm giữa hai điểm A, N.

Vậy tia MB cắt tia AN tại điểm C nằm giữa A, N. 

Phương Trình Hai Ẩn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 9 2018 lúc 3:26

HS tự chứng minh

Ninh Bích Ngọc
Xem chi tiết
Nguyễn Trung Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 2 2021 lúc 11:14

a) Xét tứ giác MAOB có

\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét (O) có 

\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{CAM}\) là góc tạo bởi dây cung CA và tiếp tuyến AM

Do đó: \(\widehat{ADC}=\widehat{CAM}\)(Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)

hay \(\widehat{MDA}=\widehat{MAC}\)

Xét ΔMDA và ΔMAC có 

\(\widehat{MDA}=\widehat{MAC}\)(cmt)

\(\widehat{AMD}\) là góc chung

Do đó: ΔMDA∼ΔMAC(g-g)

\(\dfrac{MD}{MA}=\dfrac{MA}{MC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(MA^2=MC\cdot MD\)(đpcm)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔOAM vuông tại A có AH là đường cao ứng với cạnh huyền OM, ta được:

\(MA^2=MH\cdot MO\)(2)

Từ (1) và (2) suy ra \(MH\cdot MO=MC\cdot MD\)(đpcm)

Page One
10 tháng 4 2022 lúc 22:14

c) để chứng minh EC là tiếp tuyến:

chứng minh tứ giác OECH nội tiếp thì ta sẽ có góc OHE=OCE=90o(đpcm)

=> cần chứng minh tứ giác OECH nội tiếp:

ta có: DOC=DHC (ccc CD)

xét MHC=MDO (tam giác MCH~MOD)= OCD (vì DO=OC)=OHD (cùng chắn OD) => HA là phân giác CHD

DOC=DHC => 1/2 DOC= 1/2 DHC =COE=CHE

mà COE với CHE cùng chắn cung CE trong tứ giác OHCE nên tứ giác đấy nội tiếp => xong :))))

Tô Mì
Xem chi tiết
mynameisbro
Xem chi tiết

a: Xét tứ giác MBOC có \(\widehat{MBO}+\widehat{MCO}=90^0+90^0=180^0\)

=>MBOC là tứ giác nội tiếp

=>M,B,O,C cùng thuộc một đường tròn

b: Sửa đề: \(CH\cdot HB=OH\cdot HM\)

Xét (O) có

MB,MC là các tiếp tuyến

Do đó: MB=MC

=>M nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra MO là đường trung trực của BC

=>MO\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBM vuông tại B có BH là đường cao

nên \(OH\cdot HM=HB^2\)

=>\(OH\cdot HM=HB\cdot HC\)

Dương Hoàng Anh Kiệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 12 2023 lúc 10:26

Xét ΔOAM vuông tại A có \(tanAOM=\dfrac{AM}{OA}\)

=>\(\dfrac{AM}{9}=tan30=\dfrac{1}{\sqrt{3}}\)

=>\(AM=\dfrac{9}{\sqrt{3}}=3\sqrt{3}\left(cm\right)\)