Cho góc nhọn xOy . Trên tia Ox lấy hai điểm A và C. Trên tia Oy lấy hai điểm A và D sao cho OA=OB; OC=OD ( A nằm giữa O và C , B nằm giữa O và D )
a, CM tam giác OAD = tam giác OBC
b, So sánh góc CAD và góc CBD
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C, trên tia Oy lấy hai điểm B, D sao cho OA=OB; OC=OD; (A nằm giữa O và C; B nằm giữa O và D)
A. ∆ O A D = ∆ O C B
B. ∆ O D A = ∆ O B C
C. ∆ A O D = ∆ B C O
D. ∆ O A D = ∆ O B C
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C, trên tia Oy lấy hai điểm B, D sao cho OA = OB; OC = OD (A nằm giữa O và C; B nằm giữa O và D) So sánh hai góc C A D ^ và C B D ^
A. C B D ^ = C A D ^
B. C B D ^ < C A D ^
C. C B D ^ > C A D ^
D. C B D ^ = 2. C A D ^
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C, trên tia Oy lấy hai điểm B, D sao cho OA = OB; OC = OD (A nằm giữa O và C; B nằm giữa O và D) Chọn câu đúng
A. Δ O A D = Δ O C B
B. Δ O D A = Δ O B C
C. Δ A O D = Δ B C O
D. Δ O A D = Δ O B C
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C, trên tia Oy lấy hai điểm B, D sao cho OA=OB; OC=OD (A nằm giữa O và C; B nằm giữa O và D). So sánh hai góc CAD và góc CBD
A. C B D ^ = C A D ^
B. C B D ^ < C A D ^
C. C B D ^ > C A D ^
D. C B D ^ = 2 C A D ^
Xét ΔODB và ΔOCA có
\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\left(\dfrac{3}{6}=\dfrac{4}{8}\right)\)
\(\widehat{O}\) chung
Do đó: ΔODB đồng dạng với ΔOCA
=>\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\)
=>\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)
Xét ΔODC và ΔOBA có
\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)
\(\widehat{O}\) chung
Do đó: ΔODC đồng dạng với ΔOBA
=>\(\dfrac{DC}{BA}=\dfrac{OC}{OA}\)
=>\(\dfrac{DC}{5}=\dfrac{6}{8}=\dfrac{3}{4}\)
=>\(DC=3\cdot\dfrac{5}{4}=\dfrac{15}{4}=3,75\left(cm\right)\)
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B, D sao cho OA = OB, OC = OD.
a) Chứng minh: AD = BC.
b) Gọi E là giao điểm AD và BC. Chứng minh OE là tia phân giác của góc xOy
Cho góc nhọn xOy, trên tia Ox lấy hai điểm A và B sao cho A nằm giữa O
và B, trên tia Oy lấy hai điểm C và D sao cho OC=OA; OD=OB. Chứng
minh AD=BC
GIÚP MIK VỚI!!! MIK CẦN GẤP LẮM R!!!!!!
Xét ∆OAD và ∆OBC ta có:
OC = OD (gt)
∠COB = ∠AOD
OA = OB (gt)
⇒ ∆OAD = ∆OBC (c.g.c)
Do đó: AD = BC
Vì AC = OC - OA ; BD = OD - OB
Nên AC = BD (∆OAD = ∆OBC)
Xét ∆ACD và ∆DBC ta có:
AD = BC
AC = BD
CD là cạnh chung
⇒ ∆ACD = ∆DBC (c.c.c)
Do đó: ∠CAD = ∠CBD
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C, trên tia Oy lấy hai điểm B, D sao cho OA = OB; OC = OD (A nằm giữa O và C; B nằm giữa O và D). So sánh hai góc CAD và CBD.
a) Xét ▲OAD và ▲OBC có :
OA = OB ( gt )
góc COD chung
OC = OD ( gt )
=> ▲OAD = ▲OBC ( c-g-c )
=> đpcm
b) Gọi giao điểm của BC và AD là M
Vì ▲OAD = ▲OBC ( c/m trên )
=> góc OCB = góc ODA ( 2 góc tương ứng )
Xét ▲ACM có góc MAC + góc ACM + góc CMA = 1800
Xét ▲BMD có góc BMD + góc MDB + góc DBM = 1800
Mà góc OCB = góc ODA ( c/m trên ) và góc CMA = góc BMD ( đối đỉnh )
=> góc CAM = góc MBD ( đpcm )
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng mình EA = EB
a: Xét ΔOAD và ΔOBC có
OA=OB
\(\widehat{O}\) chung
OD=OC
Do đó: ΔOAD=ΔOBC
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, B sao cho 0 < OA < OB. TRên tia Oy lấy hai điểm C, D sao cho OC = OA, OD = OB. Gọi M là giao điểm của AD và BC, N là giao điểm của OM và BD. Chứng minh rằng :
a) tam giác OAD = tam giác OCB
b) tam giác ABM = tam giác CDM
c) OM là tia phân giác của góc xOy
d) ON vuông góc với BD
a: Xét ΔOAD và ΔOCB có
OA=OC
ˆOO^ chung
OD=OB
Do đó: ΔOAD=ΔOCB
Suy ra: AD=CB