Cho tam giác ABC cân tại A. Gọi M;N lần lượt là trung điểm của AB và AC. BN và CM giao nhau tại G. Trên tia đối của tia NB lấy điểm K sao cho NK = NG. Cmr:
a, AM = AN
b, Tam giác ANG = tam giác CNK và AG//CK
c, BG = GK
D, BC+AG > 2GC
a,Xét tam giác ABN và tam giác ACM có :
AM=AN (gt)
Góc A chung
AB=AC(gt)
=> tam giác ABN = tam giác ACM (c-g-c)
b,theo câu a =>AMC^=ANB^(1)
Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)
Từ 1 và 2 =>MNI^=NMI^(3)
Vì B1^=C1^
B^=C^
=>B^-B1^=C-C1^
=>C2^=B2^(4)
Mặt khác : I1^=I2^(đối đỉnh) (5)
Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )
=> MNI^+NMI^ / 2 = B2^+C2^ / 2
=> B2^=MNI^
Vì 2 góc này ở vị trí sole trong và bằng nhau
=> MN // BC
Cho tam giác ABC vuông cân tại A, vẽ về phía ngoài tam giác ABC tam giác BCD vuông cân tại B. Gọi N là điểm bất kỳ trên cạnh BD. Trung trực của CN cắt AB tại M. Chứng minh tam giác CMN là tam giác vuông cân.
Cho tam giác ABC có góc A nhọn. Về phía ngoài của tam giác ABC vẽ tam giác BAD vuông cân tại A, tam giác CAE vuông cân tại A.
Chứng minh: a) ΔADC=ΔABE
b) Gọi K là giao của DC và BE. C/m: DB2+KC2=BC2+DK2
c) Gọi I là trung điểm của DE. C/m: IA⊥BC
Làm phần c) thôi nha (5 coin cho ng trl đầu, đúng)
Ét o ét, Ét o ét
a) \(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}=\widehat{BAE}\)
\(AD=AB;AC=AE\)
\(\Rightarrow\)△ADC=△ABE (c-g-c).
b) AB cắt DC tại F.
\(90^0=\widehat{DAF}=180^0-\widehat{DFA}-\widehat{ADF}=180^0-\widehat{BFK}-\widehat{FBK}=\widehat{FKB}\)
\(DB^2+KC^2=DK^2+KB^2+BC^2-KB^2=BC^2+DK^2\)
a) \(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}=\widehat{BAE}\)
\(AD=AB;AC=AE\)
\(\Rightarrow\)△ADC=△ABE (c-g-c).
b) AB cắt DC tại F.
\(90^0=\widehat{DAF}=180^0-\widehat{DFA}-\widehat{ADF}=180^0-\widehat{BFK}-\widehat{FBK}=\widehat{FKB}\)
\(DB^2+KC^2=DK^2+KB^2+BC^2-KB^2=BC^2+DK^2\)
c) Trên tia đối IA lấy G sao cho IA=IG
\(\Rightarrow\)△ADI=△GEI (c-g-c) \(\Rightarrow\)AD//GE.
△DGI=△EAI (c-g-c) \(\Rightarrow\)DG//AE ; DG=AE=AC.
\(90^0+\widehat{BAH}+\widehat{DAG}+90^0+\widehat{GAE}+\widehat{HAC}=360^0\)
\(\Rightarrow\widehat{BAC}+\widehat{DAE}=180^0\)
\(\Rightarrow\widehat{BAC}=\widehat{ADG}\)
\(\Rightarrow\)△ADG=△BAC (c-g-c).
\(\widehat{ABC}+\widehat{BAH}=\widehat{DAG}+\widehat{BAH}=90^0\)
Cho tam giác ABC có góc A nhọn. Về phía ngoài của tam giác ABC vẽ tam giác BAD vuông cân tại A, tam giác CAE vuông cân tại A.
Chứng minh: a) ΔADC=ΔABE
b) Gọi K là giao của DC và BE. C/m: DB2+KC2=BC2+DK2
c) Gọi I là trung điểm của DE. C/m: IA⊥BC
Làm phần c) thôi nha (3 coin cho ng trl đầu, đúng)
Cho tam giác ABC có góc A nhọn. Về phía ngoài của tam giác ABC vẽ tam giác BAD vuông cân tại A, tam giác CAE vuông cân tại A.
Chứng minh: a) ΔADC=ΔABE
b) Gọi K là giao của DC và BE. C/m: DB2+KC2=BC2+DK2
c) Gọi I là trung điểm của DE. C/m: IA⊥BC
Làm phần c) thôi nha (5 coin cho ng trl đầu, đúng)
Ét o ét, Ét o ét
Câu a)
Ta có : góc BAD = góc CAE ( = 90 độ )
=> góc BAD + góc BAC = góc CAE + góc BAC
=> góc DAC = góc BAE
Xét tam giác DAC và tam giác BAE có :
góc DAC = góc BAE ( CMT )
AD = AB ( do tam giác ABD vuông cân tại A )
AC = AE ( do tam giác ACE vuông cân tại A )
=> tam giác DAC = tam giác BAE ( cgc )
=> DC = BE ( cặp cạnh tương ứng )
và góc ADC = góc ABE ( cặp góc tương ứng )
Gọi DC giao BE tại H
Gọi DC giao AB tại O
Do tam giác ADO vuông tại A ( GT )
=> góc ODA + góc DOA = 90 độ
Mà góc ODA = góc ABH ( CMT )
và góc DOA = BOH ( 2 góc đối đỉnh )
=> góc BOH + góc OHB = 90 độ
=> tam giác OBH vuông tại H
=> OH vuông góc BH
hay DC vuông góc BE
Vậy....
Câu c)
Kẻ AM vuông góc BC cắt DE tại I
Gọi KA giao DE tại N
Xét tam giác KAC và tam giác IEA có :
AC = AE ( do tam giác ACE vuông cân tại A )
góc KAC = góc IEA ( cùng phụ với góc NAE )
góc ACK = góc IAE ( cùng phụ với góc MAC )
=> tam giác KAC = tam giác IEA ( gcg )
=> CK = AI
CMTT : BK = AI
=> CK = BK
=> K là trung điểm BC
Vậy....
Cho tam giác ABC. Vẽ về phía ngoài tam giác ABC hai tam giác vuông cân ABD và tam giác vuông cân ACE tại E và D. Gọi M là trung điểm của BC. Chứng minh rằng tam giác DME vuông cân tại M.
Cho tam giác abc, về phía ngoài dựng tam giác bcd vuông cân tại b và tam giác ace vuông cân tại a. Gọi m là trung điểm của de. Chứng minh tam giác mab vuông cân.
Cho tam giác ABC vuông tại A .Gọi N là trung điểm của AC. Đường trung trực của AC cắt cạnh BC tại M
a. Chứng minh tam giác AMC cân tại M
b.Chứng minh tam giác MAB cân tại M
a) Xét tam giác NMA và tam giác NMC ta có :
NM : cạnh chung
góc ANM = góc CNM = 90 độ
NA = NC ( GT)
<=> tam giác NMA = tam giác NMC ( c-g-c )
=> MA=MC ( cặp cạnh tương ứng )
=> tam giác AMC cân . ( đpcm )
b) Ta có : N là trung điểm của AC
=> M là trung điểm của BC => MB=MC (1)
mà MA= MC (2)
Từ (1) và (2) => MA =MB => tam giác MAB cân tại M ( đpcm )
CHO TAM GIÁC ABC VUÔNG TẠI A .VỀ PHÍA NGOÀI CỦA TAM GIÁC ABC VẼ TAM GIÁC ABD VUÔNG CÂN TẠI B,TAM GIÁC ACE VUÔNG CÂN TẠI C
A)CMR A,D,E THẲNG HÀNG
B)GỌI M LÀ TRUNG ĐIỂM CỦA BC ,N LÀ TRUNG ĐIỂM CỦA DE .CMR TAM GIÁC AMN CÂN
CHO TAM GIÁC ABC VUÔNG TẠI A .VỀ PHÍA NGOÀI CỦA TAM GIÁC ABC VẼ TAM GIÁC ABD VUÔNG CÂN TẠI B,TAM GIÁC ACE VUÔNG CÂN TẠI C
A)CMR A,D,E THẲNG HÀNG
B)GỌI M LÀ TRUNG ĐIỂM CỦA BC ,N LÀ TRUNG ĐIỂM CỦA DE .CMR TAM GIÁC AMN CÂN
câu a nè:
Tam giác ABD cân suy ra góc A=D=45
ACE cân => Góc A=E=45
Tính tổng 3 góc ở đỉnh A =180 => thẳng hàng
cân đỉnh nào phải tự tìm ra chứ má -_- -_- . câu hỏi mà
Tam giác ABD cân suy ra góc A=D=45
ACE cân => Góc A=E=45
Tính tổng 3 góc ở đỉnh A =180 => thẳng hàng