Cho tam giác ABC có góc A nhọn. Về phía ngoài của tam giác ABC vẽ tam giác BAD vuông cân tại A, tam giác CAE vuông cân tại A.
Chứng minh: a) ΔADC=ΔABE
b) Gọi K là giao của DC và BE. C/m: DB2+KC2=BC2+DK2
c) Gọi I là trung điểm của DE. C/m: IA⊥BC
Làm phần c) thôi nha (5 coin cho ng trl đầu, đúng)
Ét o ét, Ét o ét
Câu a)
Ta có : góc BAD = góc CAE ( = 90 độ )
=> góc BAD + góc BAC = góc CAE + góc BAC
=> góc DAC = góc BAE
Xét tam giác DAC và tam giác BAE có :
góc DAC = góc BAE ( CMT )
AD = AB ( do tam giác ABD vuông cân tại A )
AC = AE ( do tam giác ACE vuông cân tại A )
=> tam giác DAC = tam giác BAE ( cgc )
=> DC = BE ( cặp cạnh tương ứng )
và góc ADC = góc ABE ( cặp góc tương ứng )
Gọi DC giao BE tại H
Gọi DC giao AB tại O
Do tam giác ADO vuông tại A ( GT )
=> góc ODA + góc DOA = 90 độ
Mà góc ODA = góc ABH ( CMT )
và góc DOA = BOH ( 2 góc đối đỉnh )
=> góc BOH + góc OHB = 90 độ
=> tam giác OBH vuông tại H
=> OH vuông góc BH
hay DC vuông góc BE
Vậy....
Câu c)
Kẻ AM vuông góc BC cắt DE tại I
Gọi KA giao DE tại N
Xét tam giác KAC và tam giác IEA có :
AC = AE ( do tam giác ACE vuông cân tại A )
góc KAC = góc IEA ( cùng phụ với góc NAE )
góc ACK = góc IAE ( cùng phụ với góc MAC )
=> tam giác KAC = tam giác IEA ( gcg )
=> CK = AI
CMTT : BK = AI
=> CK = BK
=> K là trung điểm BC
Vậy....