Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 9 2019 lúc 8:18

mai linh tran
28 tháng 1 2022 lúc 16:45

ABCH??20cm16 cm9 cm

Lg

*Áp dụng định lý py-ta-go ta có: (Δ AHC)

AC2=AH2+HC2

202=AH2+162

400=AH2+256

AH2=144

AH=√144 =12

*Áp dụng định lý py-ta-go ta có: (Δ AHB)

AB2=AH2+BH2

AB2=122+92

AB2=225

AB=√225 =15

 
Dung Ung
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 5 2022 lúc 13:53

\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

\(AB=\sqrt{9^2+12^2}=15\left(cm\right)\)

Nguyễn Ngọc Huy Toàn
14 tháng 5 2022 lúc 13:55

\(BC=BH+HC=9+16=25\left(cm\right)\)

Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{25^2-20^2}=15\left(cm\right)\)

Áp dụng định lý pitago vào tam giác vuông ABH, có:

\(AB^2=BH^2+AH^2\)

\(\rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)

pourquoi:)
14 tháng 5 2022 lúc 13:57

Ta có :

BC = BH + HC

=> BC = 9 + 16

=> BC = 25 (cm)

Xét Δ ABC vuông tại A, có :

\(BC^2=AB^2+BC^2\) (định lí Py - ta - go)

=> \(25^2=AB^2+20^2\)

=> \(AB^2=225\)

=> AB = 15 (cm)

Xét Δ ABH vuông tại H, có :

\(AB^2=BH^2+AH^2\) (định lí Py - ta - go)

=> \(15^2=9^2+AH^2\)

=> \(AH^2=144\)

=> AH = 12 (cm)

 

Thảo Vy Nguyễn
Xem chi tiết
Hoàng Phúc
23 tháng 1 2016 lúc 19:09

Áp dụng pytago thôi,dễ mà

romeo bị đáng cắp trái t...
23 tháng 1 2016 lúc 19:10

bạn dùng định lý pitago  thì biết ngay mà

khôi nguyễn đăng
23 tháng 1 2016 lúc 19:12

bạn lên google 
tìm hệ thức lượng trong tam giác là có CT giải bài này cực nhanh luôn!

Mai Nguyen
Xem chi tiết
Minh Nguyen
30 tháng 1 2020 lúc 22:33

                       A B C H 20 cm 9cm 16 cm

*) Áp dụng định lí Pythagoras vào \(\Delta\)vuông ACH, ta có :

\(\Rightarrow\)AC2 = HC2 + AH2

\(\Rightarrow\)202  = 162 + AH2

\(\Rightarrow\)AH2 = 400 - 256

\(\Rightarrow\)AH2 = 144

\(\Rightarrow\)AH = 12 (cm)

*) Áp dụng định lí Pythagoras vào \(\Delta\)vuông ABH, ta có :

\(\Rightarrow\)AB2 = AH2 + HB2

\(\Rightarrow\)AB2 = 122 + 92

\(\Rightarrow\)AB2 = 225

\(\Rightarrow\)AB   = 15 (cm)

Vậy AB = 15 cm; AH = 12 cm

Khách vãng lai đã xóa
Mai Nguyen
31 tháng 1 2020 lúc 8:08

cảm ơn bạn rất nhiều!

Khách vãng lai đã xóa
Kiburowuo Tomy
Xem chi tiết
👁💧👄💧👁
25 tháng 2 2021 lúc 20:18

△ABC vuông tại A có \(BC^2=AB^2+AC^2\\ \Rightarrow BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(\Rightarrow CH=BC-BH=25-9=16\left(cm\right)\)

Nguyễn Lê Phước Thịnh
25 tháng 2 2021 lúc 22:36

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=15^2+20^2=625\)

hay BC=25(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=25-9=16(cm)

Vậy: CH=16cm

Nguyễn Hữu Quang
Xem chi tiết
Nguyễn Đức Trí
14 tháng 7 2023 lúc 23:04

Bài 3 :

\(BC=HC+HB=16+9=25\left(cm\right)\)

\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=25^2-20^2=625-400=225=15^2\)

\(\Rightarrow AB=15\left(cm\right)\)

\(AH^2=HC.HB=16.9=4^2.3^2\Rightarrow AH=3.4=12\left(cm\right)\)

Bài 6:

\(AB=AC=4\left(cm\right)\) (Δ ABC cân tại A)

\(BH=HC=2\left(cm\right)\) (Ah là đường cao, đường trung tuyến cân Δ ABC) 

\(BC=BH+HC=2+2=4\left(cm\right)\)

Chu vi Δ ABC :

\(4+4+4=12\left(cm\right)\)

Hương Giang
Xem chi tiết
Nhật Hạ
20 tháng 2 2020 lúc 18:07

Xét △BHC vuông tại H có: BH2 + HC2​ = BC2​ (định lý Pytago)

=> BH2​ + 162​ = 202​ 

=> BH2​ = 202​ - 162​ = 400 - 256 = 144

=> BH = 12 (cm)

Xét  △BHA vuông tại H có: BH2 + AH2 = AB2 (định lý Pytago)

=> 122 + 92 = AB2 

=> AB2 = 144 + 81 = 225

=> AB = 15 (cm)

Ta có: AC = AH + HC = 9 + 16 = 25

Xét △ABC có: 

AC2 = 252 = 625

AB2 + BC2 = 152 + 202 = 225 + 400 = 625

=> AC2 = AB2 + AC2 

=> △ABC vuông tại A

Khách vãng lai đã xóa
anh_tuấn_bùi
Xem chi tiết
Phạm Hồ Thanh Quang
14 tháng 6 2017 lúc 9:29

Câu 1:
Xét tam giác ABH vuông tại H, ta có:
   AB2 = AH2 +  HB2 (định lý Py-ta-go)
   202  = AH2 + 162
   400  = AH2 + 256
   AH2 = 400 - 256
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   AC2 = 122  + 52
   AC2 = 144  + 25
   AC2 = 169
   AC  = \(\sqrt{169}\)= 13 (cm)

Vậy AH = 12 cm
       AC = 13 cm

Bài 2:
Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   152  = AH2 + 92
   225  = AH2 + 81
   AH2 = 225 - 81
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHB vuông tại, ta có:
   AB2 = AH2 + HB(định lý Py-ta-go)
   AB2 = 122  + 52
   AB2 = 144  + 25
   AB2 = 169
   AB  = \(\sqrt{169}\)= 13 (cm)

Vậy AB = 13 cm

Jepz Ki
17 tháng 9 2019 lúc 21:18

Câu này dễ

AH 12cm

AC13cm

AB13cm

Karin The World
Xem chi tiết
Cao Minh Huy
30 tháng 4 2020 lúc 21:35

87676ujgfszer546l5uy

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
30 tháng 4 2020 lúc 21:41

Vẽ hình ra thì nó " siêu to khổng lồ " lắm :)

Ta có : BC = BH + HC = 9 + 16 = 25cm

Áp dụng định lí Pytago cho tam giác vuông ABC có :

BC2 = AB2 + AC2 

AB = \(\sqrt{25^2-20^2}=15cm\)

Áp dụng định lí Pytago cho tam giác vuông ABH có :

AB2 = BH2 + AH2

AH = \(\sqrt{15^2-9^2}=12cm\)

Vậy AB = 15cm , AH = 12cm

Khách vãng lai đã xóa
Trần Thu Hà
30 tháng 4 2020 lúc 21:45

Hình tự vẽ :)

Ta có : BC = BH + HC = 9 + 16 = 25 (cm)

Tam giác ABC vuông tại A nên :

BC2 = AB2 + AC2

252 = AB2 + 162

=> AB2 = 252 - 202

AB2 = 625 - 400 = 225 = 152

=> AB = 15 (cm)

Tam giác AHC vuông tại H nên :

AC2 = AH2 + HC2

202 = AH2 + 162

=> AH2 = 202 - 162

AH = 400 - 256 = 144 = 122

=> AH = 12 (cm)

Vậy AB = 15 cm ; AH = 12 cm

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 12 2017 lúc 8:08

Áp dụng định lí Pytago vào tam giác ABC ta có:

B C 2 = A B 2 + A C 2 suy ra: A B 2 = B C 2 - A C 2 = 20 2 - 12 2 = 256

Nên AB = 16cm

* Xét tam giác AHB và tam giác CAB có:

Bài tập: Các trường hợp đồng dạng của tam giác vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Suy ra: Δ AHB và CAB đồng dạng ( g.g) .

Bài tập: Các trường hợp đồng dạng của tam giác vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án D