\(\overrightarrow{F_1}+\overrightarrow{F_2}=60N.\left(\widehat{F_1;F_2}\right)=60\) độ. Tính \(\overrightarrow{F_1}+\overrightarrow{F_2}\)
Hình 4.19 biểu diễn hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) cùng tác động lên một vật, cho \(\left| {\overrightarrow {{F_1}} } \right| = 3\;N,\;\left| {\overrightarrow {{F_2}} } \right| = 2\;N.\) Tính độ lớn của hợp lực \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} \).
Tham khảo:
Dựng hình bình hành ABCD với hai cạnh là hai vectơ \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) như hình vẽ
Ta có:
\(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \overrightarrow {AD} + \overrightarrow {AB} = \overrightarrow {AC} \Rightarrow \left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {AC} } \right| = AC\)
Xét \(\Delta ABC\) ta có:
\(BC = AD = \left| {\overrightarrow {{F_1}} } \right| = 3\;,AB = \;\left| {\overrightarrow {{F_2}} } \right| = 2\;.\)
\(\widehat {ABC} = {180^o} - \widehat {BAD} = {180^o} - {120^o} = {60^o}\)
Theo định lí cosin ta có:
\(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos \widehat {ABC}\\ \Leftrightarrow A{C^2} = {2^2} + {3^2} - 2.2.3.\cos {60^o}\\ \Leftrightarrow A{C^2} = 7\\ \Leftrightarrow AC = \sqrt {7} \end{array}\)
Vậy \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} } \right| = \sqrt {7} \)
Chất điểm A chịu tác động của ba lực \(\overrightarrow {{F_1}} ,\;\overrightarrow {{F_2}} ,\;\overrightarrow {{F_3}} \) như hình 4.30 và ở trạng thái cân bằng (tức là \(\overrightarrow {{F_1}} + \;\overrightarrow {{F_2}} + \;\overrightarrow {{F_3}} = \overrightarrow 0 \)). Tính độ lớn của các lực \(\overrightarrow {{F_2}} ,\;\overrightarrow {{F_3}} \) biết \(\overrightarrow {{F_1}} \) có độ lớn là 20N.
Tham khảo:
Bước 1: Đặt \(\overrightarrow u = \overrightarrow {{F_1}} + \;\overrightarrow {{F_2}} \). Ta xác định các điểm như hình dưới.
Dễ dàng xác định điểm C, là điểm thứ tư của hình bình hành ABCD. Do đó vecto \(\overrightarrow u \) chính là vecto \(\overrightarrow {AC} \)
Vì chất điểm A ở trang thái cân bằng nên \(\overrightarrow {{F_1}} + \;\overrightarrow {{F_2}} + \;\overrightarrow {{F_3}} = \overrightarrow 0 \) hay \(\;\overrightarrow u + \;\overrightarrow {{F_3}} = \overrightarrow 0 \)
\( \Leftrightarrow \;\overrightarrow u \) và \(\;\overrightarrow {{F_3}} \) là hai vecto đối nhau.
\( \Leftrightarrow A\) là trung điểm của EC.
Bước 2:
Ta có: \(\left| {\overrightarrow {{F_1}} } \right| = AD = 20,\;\left| {\overrightarrow {{F_2}} } \right| = AB,\;\left| {\overrightarrow {{F_3}} } \right| = AC.\)
Do A, C, E thẳng hàng nên \(\widehat {CAB} = {180^o} - \widehat {EAB} = {60^o}\)
\(\begin{array}{l} \Rightarrow \widehat {CAD} = {90^o} - {60^o} = {30^o}\\ \Rightarrow \left\{ \begin{array}{l}AC = \frac{{AD}}{{\cos {{30}^o}}} = \frac{{40\sqrt 3 }}{3};\;\\AB = DC = AC.\sin {30^o} = \frac{{20\sqrt 3 }}{3}.\end{array} \right.\end{array}\)
Vậy \(\;\left| {\overrightarrow {{F_2}} } \right| = \frac{{20\sqrt 3 }}{3},\;\;\left| {\overrightarrow {{F_3}} } \right| = \frac{{40\sqrt 3 }}{3}.\)
Cho ba lực \(\overrightarrow{F_1}=\overrightarrow{MA};\overrightarrow{F_2}=\overrightarrow{MB};\overrightarrow{F_3}=\overrightarrow{MC}\) cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của \(\overrightarrow{F_1},\overrightarrow{F_2}\) đều là 100N và \(\widehat{AMB}=60^0\). Tìm cường độ và hướng của lực \(\overrightarrow{F_3}\) ?
\(\left|\overrightarrow{F_3}\right|=100\sqrt{3}\) và \(\overrightarrow{F_3}\) ngược hướng với hướng \(\overrightarrow{ME}\) với E là đỉnh thứ tư của hình bình hành MACB
Hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) cho trước cùng tác dụng lên một vật tại điểm O và tạo với nhau một góc \((\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ) = \alpha \) làm cho vật di chuyển theo hướng từ O đến C (Hình 74). Lập công thức tính cường độ của hợp lực \(\overrightarrow F \) làm cho vật di chuyển theo hướng từ O đến C (giả sử chỉ có đúng hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) làm cho vật di chuyển).
Ta có: \(\overrightarrow {{F_1}} = \overrightarrow {OA} ,\;\overrightarrow {{F_2}} = \overrightarrow {OB}= \overrightarrow {AC} \)
Khi đó: Hợp lực \(\overrightarrow F \) là \(\overrightarrow {OC} = \overrightarrow {OA} + \overrightarrow {OB} \).
Áp dụng định lí cosin cho tam giác OAC, ta có:
\(\begin{array}{*{20}{l}}
{\;\;\;{\mkern 1mu} {\kern 1pt} \;O{C^2} = O{A^2} + A{C^2} - 2.OA.AC.\cos A}\\
\begin{array}{l}
\Leftrightarrow O{C^2} = O{A^2} + A{C^2} - 2.OA.AC.\cos ({180^o} - \alpha )\\
\Leftrightarrow O{C^2} = O{A^2} + A{C^2} + 2.OA.AC.\cos \alpha
\end{array}\\
{ \Leftrightarrow \left| {\vec F} \right| = \sqrt {{{\left| {\overrightarrow {{F_1}} } \right|}^2} + {{\left| {\overrightarrow {{F_2}} } \right|}^2} + 2.\left| {\overrightarrow {{F_1}} } \right|.\left| {\overrightarrow {{F_2}} } \right|.\cos \alpha } }
\end{array}\)
Cho ba lực \(\overrightarrow{F_1}=\overrightarrow{MA};\overrightarrow{F_2}=\overrightarrow{MB};\overrightarrow{F_3}=\overrightarrow{MC}\) cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của \(\overrightarrow{F_1};\overrightarrow{F_2}\) đều là 100N và \(\widehat{AMB}=60^0\)
a) Đặt \(\overrightarrow{ME}=\overrightarrow{MA}+\overrightarrow{MB}\). Tính độ dài của đoạn ME
b) Tìm cường độ và hướng của lực \(\overrightarrow{F_3}\)
a) Do vật đứng yên nên \(\overrightarrow{F_1}+\overrightarrow{F_2}+\overrightarrow{F_3}=\overrightarrow{0}\Leftrightarrow\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\).
Suy ra M là trọng tâm tam giác ABC.
Gọi O là trung điểm của AB. Theo quy tắc trung điểm ta có:
\(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MO}=\overrightarrow{ME}\).
Do tam giác MAB cân tại M và \(\overrightarrow{AMB}=60^o\) nên tam giác MAB đều và \(MO\perp AB\).
Áp dụng định lý Pi-ta-go trong tam giác MOB ta có:
\(MO=\sqrt{MA^2-OA^2}=\sqrt{100^2-50^2}=50\sqrt{3}\).
Suy ra: \(ME=2MO=2.50\sqrt{3}=100\sqrt{3}\).
b)
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{MC}=-\left(\overrightarrow{MA}+\overrightarrow{MB}\right)\)
Vì vậy véc tơ \(\overrightarrow{MC}\) ngược hướng với véc tơ \(\overrightarrow{MA}+\overrightarrow{MB}\).
Theo kết quả câu a ta suy ra: \(\left|\overrightarrow{ME}\right|=100\sqrt{3}\).
Nên véc tơ \(\overrightarrow{MC}\) có độ dài \(100\sqrt{3}\) và ngược hướng với véc tơ \(\overrightarrow{MA}+\overrightarrow{MB}\).
Vì vậy lực \(\overrightarrow{F_3}\) có cường độ \(100\sqrt{3}N\) và ngược hướng với véc tơ \(\overrightarrow{MA}+\overrightarrow{MB}\).
Bài 1 : Tính hợp lực của 2 lực đồng quy F1=16N , F2=12N trong các tường hợp góc hợp bởi hai lực lần lược là
\(\alpha=0^o,\alpha=30^o,\alpha=60^o,\alpha=90^o,\alpha=120^o,\alpha=180^o\)
Trong 4 trường hợp áp dụng
\(F^2=F_1^2+F_1^2+2F_1F_2\cos\)
\(\overrightarrow{F_1}\uparrow\uparrow\overrightarrow{F_2}\Rightarrow F=F_1+F_2\)
\(\overrightarrow{F_1}\uparrow\downarrow\overrightarrow{F_2}\Rightarrow F=F_1-F_2\)
\(\overrightarrow{F_1}L\overrightarrow{F_2}\Rightarrow F=\sqrt{F_1^2+F_2^2}\) chữ ''L'' là vuông góc nha
Bài 2: Một lò xo có chiều dài tự nhiên Lo=12cm khi bị kéo dãn lò xo dài 24cm và lực đàn hồi của nó là 5N .
Hỏi khi lực đàn hồi của lò xo là 10N thì chiều dài của lò xo = bao nhiêu ?
Công thức
\(F_2=K.\Delta l\)
\(=K\left|l-l_o\right|\)
\(F_2=K\left|l_{2_{ }}-lo\right|\)
Bài 3: Một vật trượt trên 1 sàn nằm ngang với vận tốc ban đầu vo=10m/s hệ số ma sát trượt là \(\mu=0,1\) . Hỏi
vật đi được quảng đường = bao nhiêu thì dừng lại cho g=10m/s2
Bài 1:
\(\alpha= 0\) \(\Rightarrow F = F_1+F_2 = 16+12=28N\)
\(\alpha = 30^0\)\(\Rightarrow F^2=16^2+12^2+2.16.12.\cos30^0=...\Rightarrow F\)
Các trường hợp khác bạn tự tính nhé.
Bài 2:
Ta có: \(F_1=k.\Delta \ell_1=k.(0,24-0,12)=0,12.k=5\) (1)
\(F_1=k.\Delta \ell_2=k.(\ell-0,12)=10\) (2)
Lấy (2) chia (1) vế với vế: \(\dfrac{\ell-0,12}{0,12}=2\)
\(\Rightarrow \ell = 0,36m = 36cm\)
Bài 3:
Áp lực lên sàn: \(N=P=mg\)
Áp dụng định luật II Niu tơn ta có: \(F=m.a\Rightarrow -F_{ms}=ma\)
\(\Rightarrow a = \dfrac{-F_{ms}}{m}= \dfrac{-\mu.N}{m}== \dfrac{-\mu.mg}{m}=-\mu .g =- 0,1.10=-1\)(m/s2)
Quãng đường vật đi được đến khi dừng lại là \(S\)
Áp dụng công thức độc lập: \(v^2-v_0^2=2.a.S\)
\(\Rightarrow 0^2-10^2=2.1.S\Rightarrow S = 50m\)
giải nhanh giúp mình trước thứ 3 nha mấy bạn
Bạn đã có các công thức ở trên rồi đó, hãy thay vào công thức và tính thôi nhé.
xác định hợp lực \(\overrightarrow{F}\) của hai lực song song, cùng chiều \(\overrightarrow{F_1}\), \(\overrightarrow{F_2}\) lần lượt đặt tại A, B. Biết F1= 1N, F2= 3N, AB= 4cm.
A. \(\overrightarrow{F}\) có giá qua O, song song, cùng chiều với \(\overrightarrow{F_1}\), \(\overrightarrow{F_2}\) cách A 3cm, có độ lớn 4N.
B. \(\overrightarrow{F}\) có giá qua O, song song, ngược chiều với \(\overrightarrow{F_1}\), \(\overrightarrow{F_2}\) cách A 2cm, có độ lớn 4N.
C. \(\overrightarrow{F}\) có giá qua O, song song, ngược chiều với \(\overrightarrow{F_1}\), \(\overrightarrow{F_2}\) cách A 2cm, có độ lớn 8N.
D. \(\overrightarrow{F}\) có giá qua O, song song, cùng chiều với \(\overrightarrow{F_1}\), \(\overrightarrow{F_2}\) cách A 1cm, có độ lớn 4N.
Cho ba lực \(\overrightarrow {{F_1}} = \overrightarrow {OA} ,\;\overrightarrow {{F_2}} = \overrightarrow {OB} \) và \(\overrightarrow {{F_3}} = \overrightarrow {OC} \) cùng tác động vào một vật tại điểm O và vật đứng yên. Cho biết cường độ của \(\overrightarrow {{F_1}} ,\;\overrightarrow {{F_2}} \)đều là 120 N và \(\widehat {AOB} = {120^o}\). Tìm cường độ và hướng của lực \(\overrightarrow {{F_3}} .\)
Gọi D là đỉnh thứ tư của hình bình hành OADB.
Khi đó ta có: \(\overrightarrow {{F_1}} + \;\overrightarrow {{F_2}} = \overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OD} \)
Ta có: OA = OB = 120 suy ra tứ giác OADB là hình thoi
\( \Rightarrow \widehat {AOD} = \widehat {BOD} = \frac{{{{120}^o}}}{2} = {60^o}\)
\( \Rightarrow \Delta AOD\) đều (do OA = AD và \(\widehat {AOD} = {60^o}\))
\( \Rightarrow OD = OA = 120\)
Mặt khác: Do vật đứng yên nên \(\overrightarrow {{F_1}} + \;\overrightarrow {{F_2}} + \;\overrightarrow {{F_3}} = \overrightarrow 0 \Leftrightarrow \;\overrightarrow {{F_3}} = - (\overrightarrow {{F_1}} + \;\overrightarrow {{F_2}} ) = - \overrightarrow {OD} \)
Suy ra vecto \(\overrightarrow {OC} \) là vecto đối của vecto \(\overrightarrow {OD} \)
Lại có: \(\widehat {COA} = {180^o} - \widehat {AOD} = {120^o}\).Tương tự: \(\widehat {COB} = {120^o}\)
Vậy cường độ của lực \(\overrightarrow {{F_3}} \)là 120 N, tạo với lực\(\overrightarrow {{F_1}} ,\;\overrightarrow {{F_2}} \) góc \({120^o}\).
Cho ba lực \(\overrightarrow {{F_1}} = \overrightarrow {MA} ,\overrightarrow {{F_2}} = \overrightarrow {MB} \)và \(\overrightarrow {{F_3}} = \overrightarrow {MC} \) cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) đều là 10 N và \(\widehat {AMB} = 90^\circ \) Tìm độ lớn của lực \(\overrightarrow {{F_3}} \).
Ba lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) cùng tác dụng vào M và vật đứng yên nên hợp lực của chúng có giá trị bằng không, hay: \(\)\(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \)
Dựng hình bình hành \(MADB\), khi đó: \(\overrightarrow {MA} + \overrightarrow {MB}= \overrightarrow {MD}\)
\( \Rightarrow \overrightarrow {MD} + \overrightarrow {MC} = \overrightarrow {0}\)
\( \Rightarrow \overrightarrow {MD}, \overrightarrow {MC}\) là hai vecto đối nhau
\( \Rightarrow MD =MC\)
Như vậy ta đã xác định được phương, chiều của lực \(F_3\)
Xét hình bình hành MADB, ta có:
AM=AB và \(\widehat {AMB} = 90^\circ \)
\( \Rightarrow\) MADB là hình vuông, cạnh \(AB=10\)
\( \Rightarrow MC = MD = AB. \sqrt{2} = 10\sqrt{2}\)
Vậy độ lớn của lực \(\overrightarrow {{F_3}} \) là \(\left| {\overrightarrow {{F_3}} } \right| = \left| {\overrightarrow {MC} } \right| = MC = 10\sqrt 2 \) (N)