Cho Δ ABC vuông tại A. Kẻ đường cao AH. Biết BH = 18 cm; CH = 32cm.
Tính các cạnh AB và AC.
Cho Δ ABC vuông tại A , đường cao AH ( H thuộc BC )
a) Tính BH , AH biết AB =20cm ,BC=25cm
b) Từ B kẻ đường thẳng vuông góc với đường trung tuyến AD của tam giác ABC tại E cắt AC tại F . Chứng Minh Δ BHF đồng dạng với Δ BEC
giải chi tiết giúp mk vớiiiiii ạ
Cho Δ ABC vuông tại A, đường cao AH, AB = 30 cm, AH = 24 cm
Tính BH, BC, AC
Đường thẳng vuông góc với AB tại B cắt AH tại D. Tính BD.
Áp dụng định lí Pi ta go vào tam giác vuông AHB ta có
\(AB^2=AH^2+BH^2\) =>\(BH^2=AB^2-AH^2\)=>\(BH=\sqrt{30^2-24^2}=\sqrt{324}=18\left(cm\right)\)
Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có
\(AH^2=BH.CH\)=>\(HC=\frac{AH^2}{BH}\)=>\(HC=\frac{24^2}{18}=\frac{576}{18}=32\left(cm\right)\)
Ta có \(BC=HC+HB\) => \(BC=32+18=50\left(cm\right)\)
Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có
\(AC^2=BC.HC\)
=>\(AC=\sqrt{BC.HC}=\sqrt{50.32}=\sqrt{1600}=40\left(cm\right)\)*Chỗ này bạn dùng Pitago tính cũng được nha*
Ta có góc HBD+ góc ABH = 90 độ mà góc ACH + góc ABH = 90 độ
=> góc HBD = góc ACH
Xét tam giác BHD và tam giác CHA có
góc BHD = góc CHA = 90 độ
góc HBD = góc ACH (chứng minh trên)
Do đó tam giác BHD ~ tam giác CHA
=> \(\frac{BD}{BH}=\frac{AC}{HC}\)
=>\(BD=\frac{AC.BH}{HC}=\frac{18.40}{32}=\frac{720}{32}=22,5\left(cm\right)\)
Tính BH:
Áp dụng định lí Py ta go vào tam giác vuông ABH vuông tại H :
AB2=AH2+BH2
⇒BH=\(\sqrt{AB^2-AH^2}\)
=\(\sqrt{30^2-24^2}\)
=\(\sqrt{324}\)
BH = 18 cm .
Áp dụng hệ thức lượng trong tam giác vuông ta có :
AB2=BC.BH
\(\Rightarrow\)BC =\(\frac{AB^2}{BH}\)=\(\frac{30^2}{18}\)
\(\Rightarrow\)BC=50 (cm)
Tìm BD
HC = 50 -18 = 32cm
Theo định lý PY ta go
\(\Rightarrow\)AC = 40 cm
Cho tam giác ABC vuông tại A , đường cao AH
1. Biết AB = 18 cm , AC =24 cm .
a, Tính BC , BH , AH .
b, Tính các góc của tam giác ABC.
2. Kẻ HE vuông góc với AB , HF vuông góc với AC .
Chứng minh AE.EB+À.FC = AH 2
Bài 1:
a: BC=30cm
AH=14,4(cm)
BH=10,8(cm)
Bài 1: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AH=24 cm và HC=18 cm. Tính: BH, ,BC,AC,AB và diện tích tam giác ABC Bài 2: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB= 12 cm và BC=20 cm. Tính: BH, ,AC,HC,AH và diện tích tam giác ABC Bài 3: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=3 cm và AC=4 cm. Tính: BH, ,BC,HC,AH và diện tích tam giác ABC Bài 4: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AC=15 cm và AH =12 cm. Tính: BH, ,BC,AB,AH và diện tích tam giác ABC Bài 5:Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=20 cm và HC=9cm. Tính: BH, ,BC,AC,AH và diện tích tam giác ABC
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Cho Δ ABC vuông tại A (AC>AB), đường cao AH. Trên AC Lấy điểm D sao cho AH=HD. Qua D kẻ đường thẳng vuông góc BC cắt AC tại E
a) CM ΔABC∞ΔHAC
b) CM EC.AC=DC.BC
c) CM ΔBEC∞ΔADC và Δ ABE vuông cân
giúp mik vs mik đag cần lời giải gấp mik c.ơn
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD*CB=CA*CE
c: Xét ΔBEC và ΔADC có
CB/CA=CE/CD
góc C chung
=>ΔBEC đồg dạng vơi ΔADC
Cho Δ ABC cân tại A. Kẻ AH vuông góc với BC tại H. Qua H kẻ đường thẳng // với AC cắt AB tại D
a) CM: Δ ABH = Δ ACH
b) CM: Δ ADH cân và DH = \(\dfrac{1}{2}\)AB
c) gọi G là giao điểm của AH và CD. Qua A kẻ đường thẳng // BC cắt đường thẳng BG tại K. CM: AB // CK
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔABH=ΔACH
b: góc DAH=góc HAC=góc DHA
=>ΔDAH cân tại D
=>góc DHB=góc DBH
=>DH=DB=DA
=>D là trung điểm của AB
=>DH=1/2AB
cho tam giác ABC vuông tại A . kẻ đường cao AH . Biết BH = 8 cm , CH = 32 cm . tính các cạnh AB và AC
Chỉ mag TC minh họa
AD định lí Py ta go
\(AB^2=AH^2+BH^2=AH^2+8^2=AH^2+64\)
\(\Rightarrow AB=AH^2+64\)
Thực hiện tiếp vs AC
cho Δ ABC vuông tại A, có AB = 12 cm ; AC = 16 cm. Kẻ đường cao AH, H∈ BC).
a) Chứng minh: ΔHBA ഗΔ ABC
b) Tính độ dài các đoạn thẳng BC, AH
a, Xét ΔHBA và ΔABC có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)
b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)
Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)
\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\)
hay \(\dfrac{AH}{16}=\dfrac{12}{20}\)
\(\Rightarrow AH=\dfrac{16.12}{20}=9,6\left(cm\right)\)
Cho Δ ABC vuông tại A, đường cao AH, đừng phân giác AD. Biết CD= 68cm, BD= 51cm. Độ dài đoạn BH, HC bằng?
Cho Δ ABC vuông tại A có AH là đường cao ( H thuộc cạnh BC ) . Biết AB = 21cm , AC = 28cm . a) Tính độ dài các Cạnh BC , BH . b) Chứng minh : Δ ABH đồng dạng Δ CBA
xét tam giác ABC vuông tại A ( gt)
\(AB^2+AC^2=BC^2\)
=> \(BC^2=AB^2+AC^2\)
= \(21^2+28^2=1225\)
=> BC = \(\sqrt{1225}=35\left(BC>0\right)\)
VẬY BC = 35 CM