Cho tâm giác ABC có góc C < 90 độ . vẽ BD vuông góc vs AC ( D thuộc AC ) ; CE vuông góc vs AB ( E thuộc AB ) , BD cắt CE tại H . biết AB = HC . Tính góc C ?
Mọi người giúp em vs
Cho tam giác ABC; góc A = 90 độ ; góc B = 60 độ. Vẽ phân giác BD ( D thuộc AC ). Vẽ DH vuông góc BC ( H thuộc BC ) . So sánh BH và DC
Ta có tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )
=> góc ABD = góc HBD = 30 độ
Xét tam giác ABC ta có
góc ABC + góc ACB + góc BAC = 180 độ
=> góc ACB = 30 độ
Ta có góc BDH = 90 độ - 30 độ = 60 độ
góc CDH = 90 độ - 30 độ 60 độ
Tam giác BHD = tam giác CHD ( g.c.g )
=> BH = CH ( hai cạnh tương ứng ) ( 1 )
Tam giác CHD vuông tại H => CD > CH ( trong tam giác vuông cạnh huyền là cạnh lớn nhất ) ( 2 )
Từ (1) và (2) => BH < CD
Cho tam giác ABC có AB=AC(góc A<90 độ ).Kẻ BD vuông góc vowisAC(D thuộc AC).Kẻ CE vuông góc với AB(E thuộc AB).Chứng minh BD=CE
Xét \(\Delta\)ACE vuông tại E và \(\Delta\)ABD vuông tại D
có: AB = AC ( gt)
^A chung
=> \(\Delta\)ACE = \(\Delta\)ABD ( cạnh huyền - góc nhọn )
=> CE = BD
Cho tam giác ABC có B,C < 90 độ. Kẻ BD vuông góc với AC ( D thuộc AC). Kẻ CE vuông góc với AB ( E thuộc AB). Gọi H là giao điểm của BD và CE, nối A với H. Chứng minh: góc A + góc DHE = 180 độ
Xét tứ giác AEHD có
góc AEH+góc ADH=180 độ
=>AEHD là tứ giác nội tiếp
=>góc A+góc DHE=180 độ
Cho tam giác ABC vuông tại A (AB<AC), vẽ đường phân giác BD (D thuộc AC). Trên cạnh huyền BC lấy điểm E sao cho BE=BA
a. Chứng minh DA=DE
b. Từ điểm C vẽ đường thẳng vuông góc với AC và cắt tia BD tại K (góc ACK=90 độ). Chứng minh tam giác CBK là tam giác cân
c. Vẽ CH vuông góc BK (H thuộc BK). Chứng minh CH//EA
d. Chứng minh BD<BC và chứng minh BD<BK
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE
b: CK vuông góc AC
AB vuông góc AC
=>CK//AB
=>góc CKB=góc ABD
=>góc CKB=góc CBD
=>ΔCBK cân tại C
d: ΔABD vuông tại A
=>góc ADB<90 độ
=>góc BDC>90 độ
=>BD<BC
Cho tam giác abc cân tại a (góc a<90 độ) vẽ BD vuông góc với AC,CE vuông góc AB(D thuộc AC,E thuộc AB) gọi I là giao điểm của BD và CE
a)Chứng minh tam giác ABD bằng tam giác ACE
b)Chứng minh tam giác IBC cân
c)chứng minh AI^2+BE^2=AD^2+BI^2
a: Xét ΔADB vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔACE
b: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
Cho tam giác ABC có góc A=70 độ, góc B và C là các góc nhọn.
a) Vẽ BD vuông góc AC (D thuộc AC), CE vuông góc AB (E thuộc AB).
b) Vẽ Bx song song với CE, vẽ Cy song song với BD.
c) Vì sao AB vuông góc Bx; AC vuông góc Cy
c: Bx//CE
mà CE⊥AB
nên Bx⊥AB
Cy//BD
mà BD⊥AC
nên AC⊥Cy
Cho tam giác ABC, có góc C bằng 50 độ. Vẽ BD vuông góc với AC ( D thuộc cạnh AC), vẽ DE song song với BC ( E thuộc cạnh AB). Tính số đo góc BDE
Cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm.
a) Tính độ dài cạnh BC
b) Vẽ đường phân giác BD của tam giác ABC (D thuộc AC). Vẽ DE vuông góc BC tại E. Chứng minh tam giác ABD = tam giác EBD và Góc BED = 90 độ
c)Hai đường thẳng AB và ĐE cắt nhau tại F. Chứng minh BI là đường trung trực của EF
d) Gọi I là giao điểm của BD và FC. Chứng minh BI là đường trung trực của EF
Cho tam giác ABC có AB = AC ( góc A < 90o). Kẻ BD vuông góc với AC (D thuộc AC). Kẻ CE vuông góc với AB ( E thuộc AB). Chứng minh rằng BD = CE
AI VẼ HÌNH MÌNH TICK CHO NHA
Tam giác ABC cân tại A => AB=AC
=> góc ABC=ACB
Xét tam giác ECB và tam giác DBC có:
BC chung
góc BEC=CDB = 90 độ
góc EBC=DCB
=> tam giác ECB = tam giác DBC ( cạnh huyền-góc nhọn)
=> BD=CE ( 2 cạnh tương ứng)