Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A,C.trên tia Oy lấy hai diểm B,D sao cho = OD;CA nằm giữa O và D
a.Chứng minh tam giác OAD = tam giác OBC
b. So sánh CAD và CBD
C Chứng minh tam giác ACD = tam giác BDC
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C, trên tia Oy lấy hai điểm B, D sao cho OA=OB; OC=OD; (A nằm giữa O và C; B nằm giữa O và D)
A. ∆ O A D = ∆ O C B
B. ∆ O D A = ∆ O B C
C. ∆ A O D = ∆ B C O
D. ∆ O A D = ∆ O B C
cho góc nhọn xOy. Trên tia Ox lấy 2 điểm A,C.Trên tia Oy lấy 2 điểm B,D sao cho OA=OB, OC=OD
a/ chứng minh AD = BC
b/ gọi E là giao điểm của AD và BC. Chứng minh OE là tia phân giác của góc xOy
Xét ΔODB và ΔOCA có
\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\left(\dfrac{3}{6}=\dfrac{4}{8}\right)\)
\(\widehat{O}\) chung
Do đó: ΔODB đồng dạng với ΔOCA
=>\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\)
=>\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)
Xét ΔODC và ΔOBA có
\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)
\(\widehat{O}\) chung
Do đó: ΔODC đồng dạng với ΔOBA
=>\(\dfrac{DC}{BA}=\dfrac{OC}{OA}\)
=>\(\dfrac{DC}{5}=\dfrac{6}{8}=\dfrac{3}{4}\)
=>\(DC=3\cdot\dfrac{5}{4}=\dfrac{15}{4}=3,75\left(cm\right)\)
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C, trên tia Oy lấy hai điểm B, D sao cho OA = OB; OC = OD (A nằm giữa O và C; B nằm giữa O và D) So sánh hai góc C A D ^ và C B D ^
A. C B D ^ = C A D ^
B. C B D ^ < C A D ^
C. C B D ^ > C A D ^
D. C B D ^ = 2. C A D ^
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C, trên tia Oy lấy hai điểm B, D sao cho OA = OB; OC = OD (A nằm giữa O và C; B nằm giữa O và D) Chọn câu đúng
A. Δ O A D = Δ O C B
B. Δ O D A = Δ O B C
C. Δ A O D = Δ B C O
D. Δ O A D = Δ O B C
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C, trên tia Oy lấy hai điểm B, D sao cho OA=OB; OC=OD (A nằm giữa O và C; B nằm giữa O và D). So sánh hai góc CAD và góc CBD
A. C B D ^ = C A D ^
B. C B D ^ < C A D ^
C. C B D ^ > C A D ^
D. C B D ^ = 2 C A D ^
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B, D sao cho OA = OB, OC = OD.
a) Chứng minh: AD = BC.
b) Gọi E là giao điểm AD và BC. Chứng minh OE là tia phân giác của góc xOy
Cho góc nhọn xOy, trên tia Ox lấy hai điểm A và B sao cho A nằm giữa O
và B, trên tia Oy lấy hai điểm C và D sao cho OC=OA; OD=OB. Chứng
minh AD=BC
GIÚP MIK VỚI!!! MIK CẦN GẤP LẮM R!!!!!!
Xét ∆OAD và ∆OBC ta có:
OC = OD (gt)
∠COB = ∠AOD
OA = OB (gt)
⇒ ∆OAD = ∆OBC (c.g.c)
Do đó: AD = BC
Vì AC = OC - OA ; BD = OD - OB
Nên AC = BD (∆OAD = ∆OBC)
Xét ∆ACD và ∆DBC ta có:
AD = BC
AC = BD
CD là cạnh chung
⇒ ∆ACD = ∆DBC (c.c.c)
Do đó: ∠CAD = ∠CBD
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B, D sao cho OA = OB, OC = OD.
a) Chứng minh: AD = BC.
b) Gọi E là giao điểm AD và BC. Chứng minh OE là tia phân giác của góc xOy
a) Xét \(\Delta AOD\)và \(\Delta\)BOC có:
OA=OB (gt)
\(\widehat{O}\)chung
OD=OC (gt)
=> \(\Delta AOD=\Delta BOC\left(cgc\right)\)
=> AD=BC (2 cạnh tương ứng) (đpcm)
b) Ta có: \(\hept{\begin{cases}OC=OD\\OA=OB\end{cases}\Rightarrow OC-OA=OD-OB\Leftrightarrow AC=BD}\)
Xét tam giác EBD và tam giác EAC có:
AC chung
\(\widehat{DBE}=\widehat{CAE}\)
\(\widehat{BDE}=\widehat{ECA}\)
\(\Rightarrow\Delta EBD=\Delta EAC\left(gcg\right)\)
=> DE=EC (2 cạnh tương ứng)
Xét tam giác OED và tam giác OEC có:
OD=OC (gt)
OE chung
DE=EC (cmt)
=> \(\Delta OED=\Delta OEC\left(ccc\right)\)
=> \(\widehat{DOE}=\widehat{COE}\)(2 góc tương ứng)
=> OE là phân giác \(\widehat{xOy}\)(đpcm)
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C, trên tia Oy lấy hai điểm B, D sao cho OA = OB; OC = OD (A nằm giữa O và C; B nằm giữa O và D). So sánh hai góc CAD và CBD.
a) Xét ▲OAD và ▲OBC có :
OA = OB ( gt )
góc COD chung
OC = OD ( gt )
=> ▲OAD = ▲OBC ( c-g-c )
=> đpcm
b) Gọi giao điểm của BC và AD là M
Vì ▲OAD = ▲OBC ( c/m trên )
=> góc OCB = góc ODA ( 2 góc tương ứng )
Xét ▲ACM có góc MAC + góc ACM + góc CMA = 1800
Xét ▲BMD có góc BMD + góc MDB + góc DBM = 1800
Mà góc OCB = góc ODA ( c/m trên ) và góc CMA = góc BMD ( đối đỉnh )
=> góc CAM = góc MBD ( đpcm )