cho tam giác ABC vuông tại A,trung tuyến AM , gọi D là trung điểm của AB , E là điểm đối xứng với M qua D , F là điểm đối xứng với a qua M
a)CM tứ giác ABCF là hcn
b)Bt AB = 6cm ;BC =10cm .Tính \(S_{ABFC}\)= ?
c)Tứ giác AEMC là hình gì ?Vì sao?
Cho tam giác ABC vuông tại A, trung tuyến AM, D là trung điểm của AB. Gọi E là điểm đối xứng với M qua D, F là điểm đối xứng với A qua M.
a) Tứ giác AEMC là hình gì ? Vì sao ?
b) Chứng minh: Tứ giác ABFC là hình chữ nhật.
c) Chứng minh: AB ⊥ EM
d) Biết AB = 6cm, BC = 10cm. Tính độ dài AM, tính diện tứ giác ABFC
a: Xét tứ giác AEMC có
ME//AC
ME=AC
Do đó: AEMC là hình bình hành
Đề bài: Cho tam giác ABC vuông tại A. Trung tuyến AM. D là trung điểm của AB. Gọi E là điểm đối xứng với M qua D, F là điểm đối xứng với A qua M. a) Tứ giác AEMC là hình gì? Vì sao? b) Chứng minh: tứ giác AEMC là hình chữ nhật. c) Biết AB= 3cm, BC=5cm. Tính diện tích tứ giác ABFC
a: Xét ΔBAC có BD/BA=BM/BC
nên MD//AC và MD=1/2AC
=>ME//AC và ME=AC
=>AEMC là hình bình hành
b: Xét tứ giác ABFC có
M là trung điểm chung của AF và BC
góc BAC=90 độ
Do đó: ABFC là hình chữ nhật
c: AC=căn(5^2-3^2)=4cm
S=3*4=12cm2
Cho AABC vuông tại A, trung tuyến AM, gọi D là trung điểm của AB, E là điểm đối xứng với M qua D, F là điểm đối xứng của A qua M.
a) Chứng minh tứ giác ABFC là hơn.
b) Biết AB=6cm; BC=10cm. Tính S = ?
c) Tứ giác AEMC là hình gì? Vì sao?
a: Xét tứ giác ABFC có
M là trung điểm chung của AF và BC
góc BAC=90 độ
=>ABFC là hình chữ nhật
b: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=3\cdot8=24\left(cm^2\right)\)
c: Xét ΔBAC có BM/BC=BD/BA
nên MD//AC và MD=1/2AC
=>ME//AC và ME=AC
=>AEMC là hình bình hành
Cho tam giác ABC vuông tại A (AB<AC), trung tuyến AM. Gọi D là điểm đối xứng của A qua M.
a) CM: tứ giác ABCD là hcn
b) Kẻ vuông góc với AD tại H. Gọi K là điểm đối xứng của C qua H. CM: Tứ giác ABKD là hình thang cân
c) Gọi T là điểm đối xứng của D qua H, E là giao điểm của AC và KT. CM: CK=2EH
d) CM: EH vuông góc EC
Cho tam giác ABC vuông tại A, trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng của điểm M qua điểm D.
a) Chứng minh điểm E đối xứng với điểm M qua đường thẳng AB.
b) Các tứ giác AEMC, AEBM là hình gì ?
c) Cho BC = 4 cm. Tính chu vi tứ giác AEBM.
d) Tam giác vuông ABC thỏa điều kiện gì thì AEBM là hình vuông?
a)Vì E đối xứng với điểm M qua điểm D nên M,D,E thẳng hàng và DM = DE (1)
Áp dụng tính chất đường trung bình cho DBAC ta có DM//AC.
Mà DABC vuông tại A nên CA ^ AB Þ MD ^ AB (2)
Từ (1) và (2) Þ E đối xứng với M qua đường thẳng AB.
b) Tứ giác AEMC là hình bình hành, tứ giác AEBM là hình thoi.
c) Chu vi tứ giác AEBM là 4BM = 8 (cm)
d) nếu tứ giác AEBM là hình vuông thì ME = AB mà ME = AC (do ACME là hình bình hành) Þ AC = AB Þ DABC vuông cân tại A.
A, Xét tứ giác ABCD có
MB=MC=1/2BC(M là trung điểm BC-gt)
MD=MA=1/2AD( M là trung điểm AD-gt)
mà AD cắt BC tại M
->ABCD là hbh
Ta có ABCD là hình bh ( cmt)
mà có góc BAC = 90 độ( tam gáic ABC vuông tại A-gt)
-> ABCD là hcn(Đpcm)
B, Gọi I là giao điêm của AB và EM
Ta có góc BIM=90 độ( do M đối E qua AB-gt)
góc BAC = 90 độ( tam giác ABC vuông tại A-gt)
mà hai góc vị trí đồng vị
-> IM song song AC
Xét tam giác BAC có
M là trung điểm BC(gt)
IM song song AC( cmt)
-> I là trung điểm AB
Ta có
IA=IB=1/2AB( I là trung điểm AB-cmt)
IE=IM=1/2EM(M đối E qua AB-gt)
mà EM cắt AB tại I
-> EAMB là hình bình hành
Mà AB vuông góc EM ( M đối E qua AB-gt)
-> EAMB là hình thoi( đpcm)
Xong rùi nha bn
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng với M qua D.
a) CMR: điểm E đối xứng với M qua AB.
b) Các tứ giác AEMC, AEBM là hình gì? Vì sao?
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng với M qua D.
a. Chứng minh điểm E đối xứng với điểm M qua AB
b. Các tứ giác AEMC; AEBM là hình gì? Vì sao?
c. Cho BC = 4cm. Tính chu vi tứ giác AEBM?
a: Xét ΔBAC có
M là trung điểm của BC
D là trung điểm của AB
Do đó: MD là đường trung bình của ΔBAC
Suy ra: MD//AC
hay ME\(\perp\)AB
mà ME cắt AB tại trung điểm của ME
nên E và M đối xứng nhau qua AB
b: Xét tứ giác AEMC có
AC//ME
AC=ME
Do đó: AEMC là hình bình hành