Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồ Hoàng Long
Xem chi tiết

Giải:

Ta có: A=1011-1/1012-1

       10A=10.(1011-1)/1012-1

       10A=1012-10/1012-1

       10A=1012-1-9/1012-1

       10A=1012-1/1012-1 - 9/1012-1

       10A=1-9/1012-1

Tương tự: B=1010+1/1011+1

              10B=1+9/1011+1

Vì -9/1012-1 < 9/1011+1 nên 10A < 10B

Vậy A<B

Chúc bạn học tốt!

rô phèn
Xem chi tiết

Giải:

A=10^11-1/10^12-1

10A=10.(10^11-1)/10^12-1

10A=10^12-10/10^12-1

10A=10^12-1-9/10^12-1

10A=10^12-1/10^12-1 + -9/10^12-1

10A=1+ -9/10^12-1

 

B=10^10+1/10^11+1

10B=10.(10^10+1)/10^11+1

10B=10^11+10/10^11+1

10B=10^11+1+9/10^11+1

10B=10^11+1/10^11+1 + 9/10^11+1

10B=1 + 9/10^11+1

Vì -9/10^12-1 < 9/10^11+1 nên 10A < 10B

=>A < B

Chúc bạn học tốt!

huy pham
Xem chi tiết
buratino
Xem chi tiết
vũ kiều linh
Xem chi tiết
tuythoi
11 tháng 3 2016 lúc 20:59

=935 nhe bé

Trần Trọng Nghĩa
Xem chi tiết
Akai Haruma
30 tháng 3 2023 lúc 18:52

Lời giải:

$\frac{a+n}{b+n}-\frac{a}{b}=\frac{b(a+n)-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}$

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=\frac{n(b-a)}{b(b+n)}>0$

$\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=\frac{n(b-a)}{b(b+n)}<0$

$\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=\frac{n(b-a)}{b(b+n)}=0$

$\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

Hoàng Thu Thủy
Xem chi tiết
Lê Quốc An
Xem chi tiết
Quỳnh Anh
Xem chi tiết
DanAlex
9 tháng 4 2017 lúc 8:07

a) Với a>b thì => (a+n).b=ab+bn>ab+an=a(b+n)=>(a+n).b>a.(b+n)

=> \(\frac{a+n}{b+n}>\frac{a}{b}\)

Với b>a thì chứng minh tương tự ta được \(\frac{a+n}{b+n}< \frac{a}{b}\)

Với a=b thì chứng minh tương tự ta được \(\frac{a+n}{b+n}=\frac{a}{b}\)

Truong_tien_phuong
9 tháng 4 2017 lúc 8:14

cho \(A=\frac{10^{11}-1}{10^{12}-1}\) và \(B=\frac{10^{10}+1}{10^{11}+1}\)

          giải

Ta có 

\(A=\frac{10^{11}-1}{10^{12}-1}\)

\(\Rightarrow10.A=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)

\(B=\frac{10^{10}+1}{10^{11}+1}\)

\(\Rightarrow10.B=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)

VÌ 10.B > 1  và 10.A < 1 

=>  10.B > 10.A 

=> B > A

vậy A < B

Nguyễn Thị Kim Loan
Xem chi tiết
T.Thùy Ninh
16 tháng 6 2017 lúc 6:42

\(A=\dfrac{1011-1}{1012-1}=\dfrac{1010}{1011}\)

\(B=\dfrac{1010+1}{1011+1}=\dfrac{1011}{1012}\)

Ta có :

\(1-A=1-\dfrac{1010}{1011}=\dfrac{1}{1011}\)

\(1-B=1-\dfrac{1011}{1012}=\dfrac{1}{1012}\)

NHận thấy \(\dfrac{1}{1011}>\dfrac{1}{1012}\Rightarrow A< B\)

Trần Minh Hoàng
16 tháng 6 2017 lúc 8:26

Ta có:

\(A=\dfrac{1011-1}{1012-1}=\dfrac{1010}{1011}\)

\(B=\dfrac{1010+1}{1011+1}=\dfrac{1011}{1012}\)

Ta lại có:

\(1-\dfrac{1010}{1011}=\dfrac{1}{1011}\)

\(1-\dfrac{1011}{1012}=\dfrac{1}{1012}\)

\(\dfrac{1}{1011}>\dfrac{1}{1012}\Rightarrow\dfrac{1010}{1011}< \dfrac{1011}{1012}\Rightarrow A< B\)

Nguyễn Quảng Đại
7 tháng 1 2016 lúc 16:27

Viết thế này khó hiểu quá!