Cho ΔABC vuông tại A, đg cao AH.
a. CHo biết AB= 6cm; AC=8cm. Tính độ dài các đoạn thẳng BC, HB, HC, AH
b. Vẽ He ⊥ AB. Tính sinAHE
* Cho ΔABC vuông tại A, biết AC= 12cm, BC=15cm
a. Giải tam giác ABC
b. Tính độ dài đường cao AH, đường phân giác AD của ΔABC
* Cho ΔABC có 3 góc nhọn, kẻ đường cao AH.
a. CM: sinA+cos A>1
b. CM: BC=AH. (cotgB+cotgC)
c. Biết AH=6cm, góc B=\(60^0\), góc C=\(45^0\). Tính diện tích ΔABC
Bài 2:
b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)
\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)
\(=AH\cdot\dfrac{BC}{AH}=BC\)
Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết BH = 4cm, CH = 5cm. Tính AB, AC
b) Biết AB = 10cm, AH = 6cm, tính BH, AC
a: BC=4+5=9(cm)
\(AB=\sqrt{4\cdot9}=6\left(cm\right)\)
\(AC=\sqrt{5\cdot9}=3\sqrt{5}\left(cm\right)\)
b: \(BH=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(CH=\dfrac{AH^2}{BH}=4,5\left(cm\right)\)
\(AC=\sqrt{6^2+4.5^2}=7,5\left(cm\right)\)
Cho tam giác ABC vuông tại A đường cao AH.
a. Biết AB=3cm, BH=6cm. Tính AH,CH
b. Biết AB=16cm, BH=25cm. Tính AC,CH
Help me:))
cho ΔABC vuông A. Đường cao AH.
a. Chứng minh ΔHBA∼ΔABC
b. Tính AB, AC biết BC = 10cm, BH = 3,6 cm
Lời giải:
a. Xét tam giác $HBA$ và $ABC$ có:
$\widehat{B}$ chung
$\widehat{BHA}=\widehat{BAC}=90^0$
$\Rightarrow \triangle HBA\sim \triangle ABC$ (g.g)
b. Từ tam giác đồng dạng phần a suy ra:
$\frac{HB}{BA}=\frac{AB}{BC}$
$\Rightarrow AB^2=BH.BC=3,6.10=36$
$\Rightarrow AB=6$ (cm)
$AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8$ (cm) theo định lý Pitago
Cho ΔABC vuông tại A, có đường cao AH.
a) Cho biết AB = 9cm; AC = 12cm. Tính độ dài cạnh BC.
b) Chứng minh: AH2 = HB.HC
c) Gọi P là trung điểm của BH và Q là trung điểm của AH.
Chứng minh: AP ⊥ CQ.
cho tam giác ABC vuông tại A có AB=6cm;AC=8cm. kẻ đg cao AH.
a)chứng minh tam giác ABCđồng dạng tam giác HBA
b)chứng minh AH^2=HB.HC
c)tính độ dài của BC,AH
d)phân giác của góc ACB cắt AH tại E, cắt AB tại D. tính tỉ số diện tích của tam giác ACD và tam giác HCE
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
Suy ra: HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
tham khảo
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC∼∼ΔHBA
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
ˆHBA=ˆHACHBA^=HAC^
Do đó: ΔHBA∼∼ΔHAC
Suy ra: HB/HA=HA/HC
hay HA2=HB⋅HC
Cho ΔABC vuông tại A (AB<AC), đường cao AH.
a)Chứng minh ΔABC đồng dạng ΔHBA từ đó suy ra AB2=BC.BH; AB.AC=BC.AH.
b)Chứng minh ΔABC đồng dạng ΔHAC từ đó suy ra AC2=BC.CH.
c)Tia phân giác của góc ABC cắt AH tại K, cắt AC tại I. Chứng minh: ΔABK đồng dạng ΔCBI.
d)Chứng minh\(\dfrac{AI}{IC}=\dfrac{KH}{AK}\)
e)Tính tỉ số diện tích của ΔBHK và ΔBAI khi AB=3cm, AC=4cm.
f)Tính diện tích ΔBIC
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng vơi ΔHBA
=>AC/HA=AB/HB=BC/AB
=>AB^2=BH*BC; AC*AB=AH*BC
b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạngvới ΔHAC
=>CA/CH=CB/CA
=>CA^2=CH*CB
d: AI/IC=AB/BC
KH/AH=BH/BA
mà AB/BC=BH/BA
nên AI/IC=KH/AH
Cho ΔABC vuông tại A có AB = 12cm, AC = 16cm và đường cao AH.
a) C/m: ΔHCA đồng dạng ΔACB
b) C/m: AB2=BH.BC
c) Gọi E, F lần lượt là hình chiếu của H trên AB, AC. C/m: AE.AB=AF.AC
a: Xét ΔHCA vuông tại H và ΔACB vuông tại A có
góc HCA chung
Do đó:ΔHCA\(\sim\)ΔACB
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=AB^2\)
c: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
XétΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
Bài1:Cho ΔMNP vuông tại N. Tính độ dài MN biết MP=√30cm,NP=√14 cm
Bài2:Cho ΔABC cân tại A. Biết AB=2cm. Tính BC
Bài3:Cho ΔABC vuông tại A,AH⊥BC tại H. Tính độ dài các cạnh của ΔABC biết AH=6cm,HB=4cm,HC=9cm
Bài4:Cho ΔABC vuông tại A,AH⊥BC tại H. Tính độ dài các cạnh của ΔABC biết AH=4cm,HB=2cm,HC=8cm
Bài5:Cho ΔABC vuông tại A,AH⊥BC tại H.Biết AB=4cm,HB=2cm,HC=8cm.Tính BC,AH,AC
Bài6:Cho ΔABC vuông tại A,AH⊥BC tại H.Biết AB=6cm,AC=8cm và \(\dfrac{HB}{HC}\)=\(\dfrac{9}{16}\)Tính HB,HC
Bài 3:
\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)
BC=13cm
=>\(AC=3\sqrt{13}\left(cm\right)\)
Cho tam giác ABC vuông tại A, đường cao AD
a. Tìm AD. Biết AB = 6cm, AC = 8cm.
b. Chứng minh: ΔABC đồng dạng với ΔDBA.
c. Chứng minh: AB² = BC.BD.
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AD=6*8/10=4,8cm
b: Xét ΔABC vuông tại A và ΔDBA vuông tại D có
góc B chung
=>ΔABC đồng dạng vơi ΔDBA
c: ΔABC vuông tại A có AD là đường cao
nên BA^2=BD*BC