Bài 1: Cho A={6;7;8} B={-1;-2;-3;4}
a, Có bao nhiêu hiệu dạng a-b với a c A;b c B
b,Có boa nhiêu hiệu chia hết cho 5
c,Có bao nhiêu hiệu là số nguyên âm
Bài 2:
a,(-5)2.127+25.(-3)3 b,76:{ [15-15:(-3)-4.(3-7)]-18:(-9) }
Bài 3:
a,(5x-7)-(4+3x)=3
Bài 1 : Cho A = ( -3 ; 6 \(]\) và B = ( 2m - 1; m +3 ). Tìm m sao cho A \(\cap\) B = \(\phi\)
Bài 2 : Cho A = ( -3 ; 6 \(]\) và B = ( 2m - 1; m +3 ). Tìm m sao cho A \(\cup\) B là một khoảng
Bài 1:
Để A giao B bằng rỗng thì \(\left[{}\begin{matrix}m+3< -3\\2m-1>6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m< -6\\m>\dfrac{7}{2}\end{matrix}\right.\)
bài 1 tìm a để a+6 chia hết cho a+3
bài 2 tìm số nguyên n sao cho n-3 chia hết cho n-1
a + 6 ⋮ a + 3 (đk a ≠0; a \(\in\) Z)
a + 3 + 3 ⋮ a + 3
3 ⋮ a + 3
a + 3 \(\in\) Ư(3) = {- 3; -1; 1; 3}
a \(\in\) {-6; -4; -2; 0}
Bài 2:
n - 3 ⋮ n - 1 (đk n \(\ne\) 1)
n - 1 - 2 ⋮ n - 1
2 ⋮ n - 1
n - 1 \(\in\) Ư(2) = {-2; -1; 1; 2}
n \(\in\) {-1; 0; 2; 3}
Bài 1: a+6 \(⋮\) a+3
Ta có: a+6 = (a+3)+3
\(\Rightarrow\)(a+3)+3 ⋮ a+3
mà a+3 ⋮ a+3
⇒ 3 ⋮ a+3
⇒a+3 ϵ Ư(3)
Ư(3)={1;3}
a = 0 (vì a ϵ N)
Bài 2: n-3 ⋮ n-1
Ta có: n-3 = (n-1)-2
⇒(n-1)-2 ⋮ n-1
mà n-1 ⋮ n-1
⇒2 ⋮ n-1
⇒n-1 ϵ Ư(2)
Ư(2)={1;2}
⇒n={2;3}
Bài 1:Tìm x,biết:
a)76-6(x-1)=10
b)3.4^x-7=185
c)5x+14 chia hết cho x+2
Bài 2:Cho D=6+6^2+6^3+6^4+...+6^120.Chứng minh D chia hết cho 7
\(a,76-6\left(x-1\right)=10\)
\(76-6x-6=10\)
\(70-6x=10\)
\(6x=60\)
\(x=10\)
\(b,3.4^x-7=185\)
\(3.4^x=192\)
\(4^x=64\)
\(4^x=4^3\)
\(\Rightarrow x=3\)
Bài 1:Tìm x,biết:
a) 76 - 6( x - 1 ) = 10
=> 6( x - 1 ) = 76 - 10
=> 6( x - 1 ) = 66
=> x - 1 = 11
=> x = 12
b)3.4^x-7=185
=> 3.4^x = 185 + 7
=> 3.4^x = 192
=> 4^x = 64
=> 4^x = 4^3
=> x = 3
you sai câu a) rồ ạ
Bài 1 giải các pt sau và diễn tập nghiệm trên trục số a) 2x-6>0 b) -3x+9>0 c)3(x-1)+5>(x+1)+3 d)x/3 - 1/2>x/6 Bài 2:a)cho a>b chứng minh 3a+7>3b+7 b)cho a >b chứng minh a+3>b+1 c) cho 5a -1>5b-1 hãy so sánh a và b Bài 3: 2x(x+5)=0 b) X^2-4=0 d) (x-5)(2x+1)+(x-5)(x+6)=0 Ở bài 1 câu a có dấu hoặc bằng nữa nha bài 2 câu c cũng vậy
3:
a: =>x=0 hoặc x+5=0
=>x=0 hoặc x=-5
b: =>x^2=4
=>x=2 hoặc x=-2
c: =>(x-5)(2x+1+x+6)=0
=>(x-5)(3x+7)=0
=>x=5 hoặc x=-7/3
1.
a. 2x - 6 > 0
\(\Leftrightarrow\) 2x > 6
\(\Leftrightarrow\) x > 3
S = \(\left\{x\uparrow x>3\right\}\)
b. -3x + 9 > 0
\(\Leftrightarrow\) - 3x > - 9
\(\Leftrightarrow\) x < 3
S = \(\left\{x\uparrow x< 3\right\}\)
c. 3(x - 1) + 5 > (x - 1) + 3
\(\Leftrightarrow\) 3x - 3 + 5 > x - 1 + 3
\(\Leftrightarrow\) 3x - 3 + 5 - x + 1 - 3 > 0
\(\Leftrightarrow\) 2x > 0
\(\Leftrightarrow\) x > 0
S = \(\left\{x\uparrow x>0\right\}\)
d. \(\dfrac{x}{3}-\dfrac{1}{2}>\dfrac{x}{6}\)
\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3}{6}>\dfrac{x}{6}\)
\(\Leftrightarrow2x-3>x\)
\(\Leftrightarrow2x-3-x>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
\(S=\left\{x\uparrow x>3\right\}\)
2.
a.
Ta có: a > b
3a > 3b (nhân cả 2 vế cho 3)
3a + 7 > 3b + 7 (cộng cả 2 vế cho 7)
b. Ta có: a > b
a > b (nhân cả 2 vế cho 1)
a + 3 > b + 3 (cộng cả 2 vế cho 3) (1)
Ta có; 3 > 1
b + 3 > b + 1 (nhân cả 2 vế cho 1b) (2)
Từ (1) và (2) \(\Rightarrow\) a + 3 > b + 1
c.
5a - 1 + 1 > 5b - 1 + 1 (cộng cả 2 vế cho 1)
5a . \(\dfrac{1}{5}\) > 5b . \(\dfrac{1}{5}\) (nhân cả 2 vế cho \(\dfrac{1}{5}\) )
a > b
3.
a. 2x(x + 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(S=\left\{0,-5\right\}\)
b. x2 - 4 = 0
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(S=\left\{0,4\right\}\)
d. (x - 5)(2x + 1) + (x - 5)(x + 6) = 0
\(\Leftrightarrow\left(x-5\right)\left(2x+1+x+6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-7}{3}\end{matrix}\right.\)
\(S=\left\{5,\dfrac{-7}{3}\right\}\)
?
Bài 5: Chứng minh rằng: Tổng lập phương của 3 số nguyên liên tiếp luôn chia hết cho 9. (a^3 đọc
là a lập phương)
Bài 6: Chứng minh rằng:
a) n(n + 1) (2n + 1) chia hết cho 6
b) n^5 - 5n^3 + 4n chia hết cho 120 Với mọi số n thuộc N
Bài 7: Chứng minh rằng: n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 Với mọi số n Z
Bài 8: Chứng minh rằng: Với mọi số tự nhiên n lẻ thì :
a) n^2 + 4n + 3 chia hết cho 8
b) n^3 + 3n^2 - n - 3 chia hết cho 48
c) n^12 - n^8 - n^4 + 1chia hết cho 512
Bài 9: Chứng minh rằng:
a) Với mọi số nguyên tố p>3 thì p^2 – 1 chia hết cho 24
b) Với mọi số nguyên tố p, q >3 thì p^2 – q^2 chia hết cho 24
Bài 10: Chứng minh rằng:
n^3 + 11n chia hết cho 6 với mọi số n thuộc Z.
HD: Tách 11n = 12n – n
bài 5:Gọi a là số nguyên đầu tiên trong dãy 3 số nguyên liên tiếp. Ta có dãy số nguyên liên tiếp là a, a+1, a+2. Tổng lập phương của 3 số nguyên liên tiếp là: a^3 + (a+1)^3 + (a+2)^3 = a^3 + (a^3 + 3a^2 + 3a + 1) + (a^3 + 6a^2 + 12a + 8) = 3a^3 + 9a^2 + 15a + 9 = 3(a^3 + 3a^2 + 5a + 3) = 3(a(a^2 + 3a + 3) + 3(a + 1)) Ta thấy a(a^2 + 3a + 3) là một số nguyên, và 3(a + 1) cũng là một số nguyên. Vậy tổng lập phương của 3 số nguyên liên tiếp luôn chia hết cho 9.
bài 6:a) Để chứng minh rằng n(n + 1)(2n + 1) chia hết cho 6, ta cần chứng minh rằng n(n + 1)(2n + 1) chia hết cho cả 2 và 3. - Đầu tiên, ta chứng minh rằng n(n + 1) chia hết cho 2. Ta biết rằng một trong hai số liên tiếp n và n + 1 phải là số chẵn. Vì vậy, tích của chúng chia hết cho 2. - Tiếp theo, ta chứng minh rằng n(n + 1)(2n + 1) chia hết cho 3. Ta biết rằng một trong ba số liên tiếp n, n + 1 và 2n + 1 phải chia hết cho 3. Vì vậy, tích của chúng chia hết cho 3. Vậy, n(n + 1)(2n + 1) chia hết cho cả 2 và 3, nên nó chia hết cho 6. b) Để chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 120, ta cần chứng minh rằng n^5 - 5n^3 + 4n chia hết cho cả 2, 3, 4, 5 và 8. - Đầu tiên, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 2. Ta biết rằng n^5 chia hết cho 2 vì n^5 = n^4 * n chia hết cho 2. Tương tự, n^3 cũng chia hết cho 2 vì n^3 = n^2 * n chia hết cho 2. Và n cũng chia hết cho 2. Vậy, n^5 - 5n^3 + 4n chia hết cho 2. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 3. Ta biết rằng n^5 chia hết cho 3 vì n^5 = n^4 * n chia hết cho 3. Tương tự, n^3 cũng chia hết cho 3 vì n^3 = n^2 * n chia hết cho 3. Và n cũng chia hết cho 3. Vậy, n^5 - 5n^3 + 4n chia hết cho 3. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 4. Ta biết rằng n^5 chia hết cho 4 vì n^5 = n^4 * n chia hết cho 4. Tương tự, n^3 cũng chia hết cho 4 vì n^3 = n^2 * n chia hết cho 4. Và n cũng chia hết cho 4. Vậy, n^5 - 5n^3 + 4n chia hết cho 4. - Tiếp theo, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 5. Ta biết rằng n^5 chia hết cho 5 vì n^5 = n^4 * n chia hết cho 5. Tương tự, n^3 cũng chia hết cho 5 vì n^3 = n^2 * n chia hết cho 5. Và n cũng chia hết cho 5. Vậy, n^5 - 5n^3 + 4n chia hết cho 5. - Cuối cùng, ta chứng minh rằng n^5 - 5n^3 + 4n chia hết cho 8. Ta biết rằng n^5 chia hết cho 8 vì n^5 = n^4 * n chia hết cho 8. Tương tự, n^3 cũng chia hết cho 8 vì n^3 = n^2 * n chia hết cho 8. Và n cũng chia hết cho 8. Vậy, n^5 - 5n^3 + 4n chia hết cho 8. Vậy, n^5 - 5n^3 + 4n chia hết cho cả 2, 3, 4, 5 và 8, nên nó chia hết cho 120.
bài 7:Để chứng minh rằng n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 với mọi số nguyên n, ta sẽ sử dụng phương pháp quy nạp. Bước 1: Kiểm tra đẳng thức đúng với n = 1: 1^4 + 6(1)^3 + 11(1)^2 + 6(1) = 1 + 6 + 11 + 6 = 24, là số chia hết cho 24. Bước 2: Giả sử đẳng thức đúng với n = k, tức là k^4 + 6k^3 + 11k^2 + 6k chia hết cho 24. Bước 3: Chứng minh đẳng thức cũng đúng với n = k + 1, tức là (k + 1)^4 + 6(k + 1)^3 + 11(k + 1)^2 + 6(k + 1) chia hết cho 24. Ta có: (k + 1)^4 + 6(k + 1)^3 + 11(k + 1)^2 + 6(k + 1) = k^4 + 4k^3 + 6k^2 + 4k + 1 + 6(k^3 + 3k^2 + 3k + 1) + 11(k^2 + 2k + 1) + 6(k + 1) = (k^4 + 6k^3 + 11k^2 + 6k) + (4k^3 + 6k^2 + 4k + 1 + 6k^3 + 18k^2 + 18k + 6 + 11k^2 + 22k + 11 + 6k + 6) = (k^4 + 6k^3 + 11k^2 + 6k) + (10k^3 + 35k^2 + 32k + 18) = (k^4 + 6k^3 + 11k^2 + 6k) + 2(5k^3 + 17k^2 + 16k + 9) Vì k^4 + 6k^3 + 11k^2 + 6k chia hết cho 24 theo giả thiết quy nạp, và 5k^3 + 17k^2 + 16k + 9 cũng chia hết cho 24 (có thể chứng minh bằng cách sử dụng phương pháp quy nạp tương tự), nên tổng của hai số này cũng chia hết cho 24. Vậy, theo nguyên lý quy nạp, ta có thể kết luận rằng n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 với mọi số nguyên n.
bài 8:a) Ta có: n^2 + 4n + 3 = (n + 1)(n + 3) Vì n là số tự nhiên lẻ nên n + 1 và n + 3 đều là số chẵn. Vậy (n + 1)(n + 3) chia hết cho 2. Ta cũng thấy rằng n + 1 và n + 3 có tích là một số chẵn. Vậy (n + 1)(n + 3) chia hết cho 4. Do đó, (n + 1)(n + 3) chia hết cho 8. b) Ta có: n^3 + 3n^2 - n - 3 = (n - 1)(n^2 + 4n + 3) Vì n là số tự nhiên lẻ nên n - 1 là số chẵn. Vậy (n - 1)(n^2 + 4n + 3) chia hết cho 2. Ta cũng thấy rằng n - 1 và n^2 + 4n + 3 có tích là một số chẵn. Vậy (n - 1)(n^2 + 4n + 3) chia hết cho 4. Do đó, (n - 1)(n^2 + 4n + 3) chia hết cho 8. c) Ta có: n^12 - n^8 - n^4 + 1 = (n^12 - n^8) - (n^4 - 1) = n^8(n^4 - 1) - (n^4 - 1) = (n^8 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)^2 = (n^4 + 1)(n^4 - 1)(n^4 - 1) = (n^4 + 1)(n^4 - 1)(n^2 + 1)(n^2 - 1) = (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) Vì n là số tự nhiên lẻ nên n + 1 và n - 1 đều là số chẵn. Vậy (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 2. Ta cũng thấy rằng (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) có tích là một số chẵn. Vậy (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 4. Do đó, (n^4 + 1)(n^4 - 1)(n^2 + 1)(n + 1)(n - 1) chia hết cho 8. Vậy ta đã chứng minh được các phần a), b), c).
bài 9:a) Ta có p > 3 là số nguyên tố, suy ra p là số lẻ. Vì vậy, p^2 là số lẻ. Ta có thể biểu diễn p^2 - 1 dưới dạng (p - 1)(p + 1). Vì p là số lẻ, nên p - 1 và p + 1 đều là số chẵn. Do đó, (p - 1)(p + 1) là tích của hai số chẵn liên tiếp, nên chia hết cho 2. Ngoài ra, vì p là số nguyên tố, nên p không chia hết cho 3. Do đó, p - 1 và p + 1 đều không chia hết cho 3. Vậy, (p - 1)(p + 1) chia hết cho 2 và không chia hết cho 3. Từ đó, suy ra p^2 - 1 chia hết cho 2 x 3 = 6. Vì p^2 - 1 chia hết cho 6, nên p^2 - 1 chia hết cho 2 x 3 x 4 = 24. b) Ta có p > 3 và q > 3 là hai số nguyên tố, suy ra p và q đều là số lẻ. Ta có thể biểu diễn p^2 - q^2 dưới dạng (p - q)(p + q). Vì p và q là số lẻ, nên p - q và p + q đều là số chẵn. Do đó, (p - q)(p + q) là tích của hai số chẵn liên tiếp, nên chia hết cho 2. Ngoài ra, vì p và q là số nguyên tố, nên p không chia hết cho 3 và q không chia hết cho 3. Do đó, p - q và p + q đều không chia hết cho 3. Vậy, (p - q)(p + q) chia hết cho 2 và không chia hết cho 3. Từ đó, suy ra p^2 - q^2 chia hết cho 2 x 3 = 6. Vì p^2 - q^2 chia hết cho 6, nên p^2 - q^2 chia hết cho 2 x 3 x 4 = 24.
bài 10:Ta có: 11n = 12n - n Vậy ta cần chứng minh rằng n^3 + 12n - n chia hết cho 6 với mọi số n thuộc Z. Ta thấy n^3 + 12n - n = n(n^2 + 12 - 1) = n(n^2 + 11) Để chứng minh n(n^2 + 11) chia hết cho 6, ta cần chứng minh rằng n(n^2 + 11) chia hết cho cả 2 và 3. - Chứng minh n(n^2 + 11) chia hết cho 2: Nếu n chẵn, thì n chia hết cho 2, n^2 cũng chia hết cho 2, nên n(n^2 + 11) chia hết cho 2. Nếu n lẻ, thì n chia hết cho 2, n^2 chia hết cho 4, nên n(n^2 + 11) chia hết cho 2. - Chứng minh n(n^2 + 11) chia hết cho 3: Nếu n chia hết cho 3, thì n(n^2 + 11) chia hết cho 3. Nếu n không chia hết cho 3, ta có 3 trường hợp: + n = 3k + 1, thì n^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1, nên n^2 + 11 = 3(3k^2 + 2k + 3) + 2, n(n^2 + 11) chia hết cho 3. + n = 3k + 2, thì n^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1, nên n^2 + 11 = 3(3k^2 + 4k + 4) + 2, n(n^2 + 11) chia hết cho 3. + n = 3k, thì n^2 = 9k^2, nên n^2 + 11 = 9k^2 + 11 = 3(3k^2 + 3) + 2, n(n^2 + 11) chia hết cho 3. Vậy ta đã chứng minh được rằng n(n^2 + 11) chia hết cho cả 2 và 3, nên n(n^2 + 11) chia hết cho 6 với mọi số n thuộc Z.
Các bạn ơi cho mình hỏi bài nì làm sao zậy ? Đề cho A =6^1+6^2+6^3+...+6^18+6^19+6^20. Chứng minh A chia hết cho 222
Ta có : A = 6 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + .... + 617 + 618 + 619 + 620
= (6 + 62 + 63 + 64) + (65 + 66 + 67 + 68) + .... + (617 + 618 + 619 + 620)
= (6 + 62 + 63 + 64) + 64.(6 + 62 + 63 + 64) +...+ 616.(6 + 62 + 63 + 64)
= 1554 + 64.1554 + .... + 616.1554
= 1554.(1 + 64 + .... + 616)
= 222.7.(1 + 64 + .... + 616) \(⋮\)222
=> \(A⋮222\)(ĐPCM)
Bạn có thể làm theo cách của bạn Xyz hoặc làm theo cách sau :
Ta có : A=6+62+63+...+620
=(6+63)+(62+64)+...+(618+620)
=6(1+62)+62(1+62)+...+618(1+62)
=6.37+62.37+...+618.37
=222+6.6.37+...+617.6.37
=222+6.222+...+617.222
Vì 222\(⋮\)222 nên 222+6.222+...+617.222\(⋮\)222
hay A\(⋮\)222
Vậy A\(⋮\)222.
=(6+6^2+6^3+6^4)+6^5(6+6^2+6^3+6^4)+......+6^17(6+6^2+6^3+6^4)
=(6+36+216+1296)+6^5(6+36+216+1296)+.....+6^17(6+36+216+1296)
=1554+6^5*1554+.....+6^17*1554
=1554*(1+6^5+.....+6^17)
Vì 1554 chia hết cho 222
=>1554*(1+6^5+.....+6^17)chia hết cho 222
Hay A chia hết cho 222
Vậy A chia hết cho 222
bài 5 : Cho : A=n^6=10n^4+n^3+98n-6n^5-26 và B=1-n+n^3 . CMr với n nguyên thì thương của phép chia A cho B là bội của 6
bài 6 : CM với mọi số nguyên a ta đếu có : a^3+5a là số nguyên chia hết cho 6
Bài 1 : Cho a chia 6 dư 2
b chia 6 dư 2
Chứng tỏ rằng: ( a-b)chia hết cho 6
Bài 2 : Cho a chia cho 9 dư 1
b chia 9 dư 3
c chia 9 dư 5
Chứng tỏ rằng : ( a+b+c) chia hết cho 9
Bài 3: Cho A+B+C=110
A-B-C=2
B-15=C+15
Tìm A;B;C
Bài 4: Cho a chia 5 dư 4
b chia 5 dư 3
c chia cho 5 dư 1
Chứng tỏ rằng : ( a-b-c) chia hết cho 5
bài 1:vì:số dư 2 trừ số dư 2 = số dư 0,0 ko có giá trị
bài 2:vì:số dư 1 cộng số dư 3 cộng số dư 5 = số dư 9,9 chia hết cho 9
bài 3:có lẽ là lỗi đề chứ mình chịu
bài 4:vì:số dư 4 trừ số dư 3 -số dư 1= số dư 0,0ko có giá trị
học tốt bạn nhé
Bài 6: Cho A =1+1/2+1/3+1/4+...+1/63. Chứng minh rằng: A > 3
Bài 1:tìm n thuộc Z để
a. n-4 chia hết cho n-1
b. n+5 chia hết cho n-2
c.2n+1 chia hết cho n-5
d. 3n-a chia hết cho n-2
Bài 2 tìm x, y thuộc Z
a,( x+3)x ( y+2) = 1
b. ( 2x -5)x (y-6)=17
c. ( x-1)x(x+y)=33
Bài 3:cho biết a-b chia hết cho 6
chứng minh
a. a+5bchia hết cho b
b. a+17b chia hết cho 6
c. a-13b chia hết cho 6
Bài 4. chứng minh với a thuộc Z
a. M= a(a+2)-a(a-5)-7 la bội của 7
b. N= (a-2) (a+3)-(a-3)(a+2)là 2 số chẵn