Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thu Hà Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 2 2023 lúc 10:16

vecto AH=(x+2;y-4); vecto BC=(-6;-2)

vecto BH=(x-4;y-1); vecto AC=(0;-5)

Theo đề, ta có: -6(x+2)-2(y-4)=0 và 0(x-4)-5(y-1)=0

=>y=1 và -6(x+2)=2(y-4)=2*(1-4)=-6

=>x+2=1 và y=1

=>x=-1 và y=1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 10 2019 lúc 12:09

Chọn A.

Gọi AH là đường cao của tam giác ABC ⇒ AH ⊥ BC.

B(4;5), C(-3;2) Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 1)

Phương trình đường cao AH đi qua A(2;-1) nhận Đề kiểm tra 15 phút Hình học 10 Chương 3 có đáp án (Đề 1) là VTPT là:

7.(x - 2) + 3.(y + 1) = 0 ⇔ 7x - 14 + 3y + 3 = 0 ⇔ 7x + 3y - 11 = 0

Vậy phương trình đường cao AH là 7x + 3y - 11 = 0.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 11 2019 lúc 3:22

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 9 2019 lúc 4:52

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 9 2019 lúc 4:35

Đáp án : D

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 3 2018 lúc 14:05

Chọn B.

Công Nguyễn
Xem chi tiết
Ngô Thành Chung
11 tháng 8 2021 lúc 20:34

\(\overrightarrow{BC}=\left(-6;-3\right)\)

Trọng tâm của ΔABC là G(2; 1)

Khi tịnh tiến ΔABC thành ΔA'B'C' theo \(\overrightarrow{BC}=\left(-6;-3\right)\) thì G(2;1) cũng sẽ được tịnh tiến theo \(\overrightarrow{BC}=\left(-6;-3\right)\) thành G' (x;y)

⇒ \(\overrightarrow{GG'}=\overrightarrow{BC}\) = (-6 ; -3)

⇒ \(\left\{{}\begin{matrix}x-2=-6\\y-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-2\end{matrix}\right.\). Vậy G' (-4 ; -2)

hương ly tưởng thái
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2023 lúc 10:56

a: Tọa độ trọng tâm là:

x=(1+2+0)/3=1 và y=(3+1+3)/3=7/3

c: \(d\left(A;d\right)=\dfrac{\left|1\cdot1+3\cdot\left(-1\right)+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\sqrt{2}}{2}\)

Nguyễn Thị Lan Hương
Xem chi tiết
Trần Anh Tài
Xem chi tiết
Phạm Thị Thủy
15 tháng 5 2016 lúc 21:48

C A B 4 6 -1

Gọi \(\left(x_G;y_G\right)\) là tọa độ của G. Theo công thức tính trọng tâm tam giác, ta có :

\(\begin{cases}x_G=\frac{-1+4+0}{3}=1\\y_G=\frac{0+0+m}{3}=\frac{m}{3}\end{cases}\)

Vậy \(G\left(1;\frac{m}{3}\right)\)

\(\widehat{AGB}=90^0\Leftrightarrow\overrightarrow{BG}\perp AG\Leftrightarrow\overrightarrow{BG}.\overrightarrow{AG}=0\)  (1)

           \(\overrightarrow{BG}=\left(1-4;\frac{m}{3}-0\right)=\left(-3;\frac{m}{3}\right)\)

            \(\overrightarrow{AG}=\left(1+1;\frac{m}{3}-0\right)=\left(2;\frac{m}{3}\right)\)

\(\overrightarrow{BG}.\overrightarrow{AG}=\frac{m^2}{9}-6\)  (2)

Thay (2) vào (1) ta có : \(\widehat{AGB}=90^0\Leftrightarrow m^2=54\Leftrightarrow m=\pm3\sqrt{6}\)

Vậy có 2 giá trị cần tìm của m