chứng minh rằng BCNN(2n+3;2n+5) = (2n+3)(2n+5)
chứng tỏ rằng BCNN (2n + 1,3n + 2) = (2n+1) . (3n+2)
Gọi \(ƯC\left(2n+1;3n+2\right)=d\left(d\in N\right)\)
\(2n+1⋮d,3n+2⋮d\)
\(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(6n+4-6n-3⋮d\)
\(1⋮d\).Do đó d = 1
Vậy 2n + 1 và 3n + 2 là 2 số nguyên tố cùng nhau nên \(BCNN\left(2n+1;3n+2\right)=\left(2n+1\right)\left(3n+2\right)\)
chứng tỏ rằng
BCNN(2n + 1,3n +2) = (2n + 1) . (3n + 2)
chứng tỏ rằng BCNN (2n+1,3n+2) = (2n+1).(3n+2). CÁC BẠN GIÚP MÌNH NHÉ
chứng minh với mọi số tự nhiên n thì:
a) BCNN (2n+1,3n+2) = (2n+1) (3n+2)
b) tìm ƯCLN(2n+1,9n+6)
a,Gọi d là UCLN(2n+1;3n+2)
Ta có:
3n+2 chia hết cho d
2n+1 chia hết cho d
=> 2(3n+2)-3(n+1)=1 chia hết cho d
=> d E {-1;1}
=> 2n+1 và 3n+2 luôn nguyên tố cùng nhau
=> BCNN(2n+1,3n+2)=(2n+1)(3n+2) (ĐPCM)
b, Gọi a là UCLN(2n+1;9n+6)
=> 2n+1 chia hết cho a
9n+6 chia hết cho a
=> 2(9n+6)-9(2n+1) chia hết cho a
=> 3 chia hết cho a=> a E {3;-3;1;-1}
Ta có: 9n+6 thì chia hết cho 3 nhưng 2n+1 thì chưa chắc
2n+1 chia hết cho 3 <=> n=3k+1 (k E N)
Vậy: UCLN(2n+1;9n+6)=3 <=> n=3k+1
còn nếu n khác: 3k+1
=> UCLN(2n+1;9n+6)=1
b1.Cho AB = 2CD .Chứng minh rằng ABCD chia hết cho 67
b2.chứng minh N.(n+1).(2n+1) chia hết cho 2 và 3
b3. chứng minh rằng
a.4n - 5 chia hết cho 2n - 1
b.2.(2n - 1) -3 chia hết cho 2n -1
Bài 3:
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
b: =>-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
bài 3: Chứng minh rằng tích của 2 số bằng BCNN nhân ƯCLN
chứng minh rằng : 2n. (2n+1).(2n+2) ⋮3 với mọi số tự nhiên n
2n, 2n + 1 và 2n + 2 là 3 số tự nhiên liên tiếp. Mà trong 3 số tự nhiên liên tiếp, luôn tồn tại 1 số chia hết cho 3
--> 2n(2n + 1)(2n + 2) chia hết cho 3 với mọi số tự nhiên n.
- Khi \(2n\) chia cho 3 thì sẽ có số dư là 0,1,2:
- Xét \(2n=3k\) =>\(2n\left(2n+1\right)\left(2n+2\right)\) ⋮3 (1)
- Xét \(2n=3k+1\) =>\(2n+2=3k+3\) =>\(2n\left(2n+1\right)\left(2n+2\right)\)⋮3 (2)
- Xét \(2n=3k+2\) =>\(2n+1=3k+3\) =>\(2n\left(2n+1\right)\left(2n+2\right)\)⋮3 (3)
- Từ (1),(2),(3) suy ra \(2n\left(2n+1\right)\left(2n+2\right)\)⋮3 với mọi số tự nhiên n.
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
chứng minh rằng n^4+2n^3+2n^2+2n+1 ko là số chính phương
ta có n^4+2n^3+2n^2+2n+1=(n^2+n+1)^2-n^2=(n^2+1)(n+1)^2=t^2khi và chỉ khi n^2+1 là số chính phương
có n^2+1=a^2khi và chỉ khi n=0