Cho \(0\le x\le3;0\le y\le1\). Tìm giá trị lớn nhất của biểu thức \(P=\left(3-x\right)\left(1-y\right)\left(4x+7y\right)\)
Nãy mk nhầm thành Max, sorry :v
Ta có: x \(\ge\) 0 \(\Rightarrow\) \(\sqrt{x}\ge0\) (1)
x \(\le\) 3 \(\Rightarrow\) 3 - x \(\ge\) 0 \(\Rightarrow\) \(\sqrt{3-x}\ge0\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\sqrt{x}.\sqrt{3-x}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\) x = 0 hoặc x = 3
Chúc bn học tốt!
Với 0 \(\le\) x \(\le\) 3 ta có: A = \(\sqrt{x}\cdot\sqrt{3-x}\) = \(\sqrt{x\left(3-x\right)}\)
Áp dụng BĐT Cô-si cho 2 số x và 3 - x không âm ta được:
\(\dfrac{x+\left(3-x\right)}{2}\ge\sqrt{x\left(3-x\right)}\)
\(\Leftrightarrow\) \(\sqrt{x\left(3-x\right)}\le\dfrac{3}{2}\)
Hay A \(\le\) \(\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\) x = 3 - x \(\Leftrightarrow\) x = \(\dfrac{3}{2}\)
Chúc bn học tốt!
cho \(0\le x\le4;0\le y\le3\)Tìm GTLN của:
\(Q=\left(3-y\right)\left(4-x\right)\left(2y+3z\right)\)
Cho \(P=x\sqrt{5-x}+\left(3-x\right)\sqrt{2+x}\). Tìm GTLN và GTNN của P khi \(0\le x\le3\)
Tìm x để biểu thức có nghĩa \(\frac{\sqrt{4-x}}{\sqrt{x+1}}+\sqrt{9-x^2}\)
Biểu thức có nghĩa khi \(\hept{\begin{cases}4-x\ge0\\x+1>0\\9-x^2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le4\\x\ge1\\\left(3-x\right)\left(3+x\right)\ge0\end{cases}}\)\(\left(1\right)\)
\(\left(3-x\right)\left(3+x\right)\ge0\)
\(TH1:\hept{\begin{cases}3-x\ge0\\3+x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\le3\\x\ge-3\end{cases}\Rightarrow}-3\le x\le3}\)\(\left(2\right)\)
\(TH2\hept{\begin{cases}3-x< 0\\3+x< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< -3\end{cases}\left(ktm\right)}}\)
TỪ ( 1 ) và ( 2 ) ta có : \(\hept{\begin{cases}1\le x\le4\\-3\le x\le3\end{cases}\Rightarrow1\le x\le3}\)
Vậy với \(1\le x\le3\)thì biểu thức xác định
Xl nha , ké chút ạ
Sai bất đẳng thức giữa của (1) rồi\(x+1>0\Leftrightarrow x>-1.\)
Suy ra phải sửa luôn mấy phần bên dưới. Và kết luận : \(-1< x\le3\)
cho \(x,y\in R\)thỏa mãn\(\hept{\begin{cases}0\le x\le3\\0\le y\le4\end{cases}}\)
Tìm GTLN của \(A=\left(3-x\right)\left(4-y\right)\left(2x+3y\right)\)
các bạn giải giúp mình nhanh lên nhé :)
A=(6-2x)(12-3y)(2x+3y)/6
<=(6-2x+12-3y+2x+3y)3/(6.27)
=183/(6.27)=36
Bài 1: Tìm min và max của \(A=x\left(x^2-6\right)\) biết \(0\le x\le3\)
Baì 2: Tìm max của \(A=\left(3-x\right)\left(4-y\right)\left(2x+3y\right)\) biết \(0\le x\le3\) và \(0\le y\le4\)
Bài 3: Cho a, b, c>0 và a+b+c=1. Tìm min của \(A=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
Bài 4: Cho 0<x<2. Tìm min của \(A=\frac{9x}{2-x}+\frac{2}{x}\)
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
Tìm GTNN, GTLN của: \(A=x\left(x^2-6\right)\) biết \(0\le x\le3\)
Tìm Min, Max của \(A=x\left(x^2-6\right)\) với \(0\le x\le3\)
này mà dám bảo là toán lớp 3 à
đây là toán ở cấp 2 mà
đây mak toán lớp 3 ak
Cho \(0\le x,y,z,t\le1\). Chứng minh rằng \(\frac{x}{yzt+1}+\frac{y}{ztx+1}+\frac{z}{txy+1}+\frac{t}{xyz+1}\le3\).
Cho a;b;c;x;y thỏa mãn điều kiện sau:
0<b\(\le a\le4\),a+b\(\le7\),2\(\le x\le3\le y\).
Tìm GTNN của \(P=\frac{2x+\frac{1}{x}+y+\frac{2}{y}}{a^2+b^2}\)