Cho tâm giác MNP có M thuộc đg tròn đg kính MN, M(-1;4) và N(1;-3). Biết P thuộc đg thẳng d: x-2y+5=0. Tính diện tích tâm giác MNP và pt đg tròn đg kính MP. Tìm Q thuộc d sao cho S MNP =1/3 S MNQ. LÀM RÕ RÀNG DÙM MÌNH VỚI Ạ.
Cho đường tròn tâm O đường kính AB. Vẽ đường tròn tâm I đg kính OA bán kính OC của đg tròn tâm O cắt đg trong tâm I tại D. Vẽ CH vuong goc AB (C thuộc đg tròn tâm O, đg kính AB). C/m rằng ACDH là hình thang cân. Vẽ hình giúp e với luôn đk ạ
Xét (I) có
ΔADO nội tiếp
AO là đường kính
=>ΔADO vuông tại D
góc ADC=góc AHC=90 độ
=>AHDC nội tiếp
Xét ΔOHC vuông tại H và ΔODA vuông tại D có
OC=OA
góc HOC chung
=>ΔOHC=ΔODA
=>OH=OD
Xét ΔOAC có OH/OA=OD/OC
nên HD//AC
Xét tứ giác AHDC có
HD//AC
góc HAC=góc DCA
=>AHDC là hình thang cân
Cho đt AB=4cm.Vẽ đg tròn tâm A bán kính 2cm cắt AB&đg tròn tâm B bán kính 1cm cắt AB tại N. Độ dài đt MN=
Theo hình vẽ ta có
AM + MN + BN = AB
hay MN = 4 - ( 2 + 1 )
= 1 ( cm )
Vậy MN = 1 cm
Cho tam giác ABC là đg cao. Đg tròn tâm E đg kính BH cắt cạnh AB ở M và đg tròn tâm l đg kinh CH cắt cạnh AC ở N. a, CM AH là tiếp tuyến của đg tròn tâm E. b, CM tứ giác AMHN là hình chữ nhật. Mik cần gấp
a: Xét (E) có
EH là bán kính
AH vuông góc EH tại H
Do đó: AH là tiếp tuyến của (E)
b: Xét (E) co
ΔHMB nội tiếp
HB là đường kính
Do dó: ΔHMB vuông tại M
Xét (I) có
ΔCNH nội tiếp
CH là đường kính
Do đó: ΔCNH vuông tại N
Xét tứ giácc AMHN có
góc AMH=góc ANH=góc MAN=90 độ
nên AMHN là hình chữ nhật
Cho điểm M trên đg tròn tâm O , đg kính AB , tiếp tuyến tại M và B của đg tròn tâm Ờ cắt nhau tại D . Quá O kẻ đg thẳng vuông góc với OD cắt MB tại C Cắt BD tại N a, CM : DC = DN b, AC là tiếp tuyến
cho nửa đg tròn tâm O có đg kính AB=2R.Trên tia tới của tia AB lấy điểm M bất kỳ từ M. Vẽ đg thẳng ko đi qua O,đg thẳng này cắt nửa đg tròn O tại C và D(C nằm giữa M và D).Gọi I là giao điểm của AD và BC vẽ IE vuông góc vs AB
a)CM:ΔMAD đồng dạng ΔMCB.Từ đó suy ra MA.MD=MC.MD
b)CM:tg BDIE nt
c)CM:DI là tia phân giác của góc CDE
a) Xét (O) có
\(\widehat{CDA}\) là góc nội tiếp chắn \(\stackrel\frown{CA}\)
\(\widehat{ABC}\) là góc nội tiếp chắn \(\stackrel\frown{CA}\)
Do đó: \(\widehat{CDA}=\widehat{ABC}\)(Hệ quả góc nội tiếp)
hay \(\widehat{MDA}=\widehat{MBC}\)
Xét ΔMAD và ΔMCB có
\(\widehat{MDA}=\widehat{MBC}\)(cmt)
\(\widehat{AMD}\) chung
Do đó: ΔMAD\(\sim\)ΔMCB(g-g)
Suy ra: \(\dfrac{MA}{MC}=\dfrac{MD}{MB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(MA\cdot MB=MC\cdot MD\)(đpcm)
Cho điểm M nằm ngoài đg tròn tâm o,bán kính R,OM=2R.Từ M kẻ 2 tiếp tuyến MA,MBvới đg tròn (Avà Blà tiếp điểm).Tính số đo của góc ở tâm AOB
cho đg tròn tâm (o) đg kính AB = 2R trên tia đối của tia AB lấy điểm M sao cho AM = R . Kẻ đg thẳng d vông góc vs BM tại M , gọi n là trung điểm của OA , qua N vẽ dây cung CD của đg tròn (o) ,( CD ko là đg kính ) , tia BC cắt D tại E , tia BD cắt D tại F
cho đg tròn tâm (o) đg kính AB = 2R trên tia đối của tia AB lấy điểm M sao cho AM = R . Kẻ đg thẳng d vông góc vs BM tại M , gọi n là trung điểm của OA , qua N vẽ dây cung CD của đg tròn (o) ,( CD ko là đg kính ) , tia BC cắt D tại E , tia BD cắt D tại F
a) chứngminh tg MACE nội tiếp
b) tính tích BE.BC theo R
a: góc ACB=1/2*180=90 độ
=>AC vuông góc BE
góc AME+góc ACE=180 độ
=>AMEC nội tiếp
b: Xét ΔBCA vuông tại C và ΔBME vuông tại M có
góc CBA chung
=>ΔBCA đồng dạng với ΔBME
=>BC/BM=BA/BE
=>BE*BA=BM*BA=3R*2R=6R^2
cho tam giác abc vuông tại A vẽ đg tròn tâm O đg kính AC , đg tròn cắt BC tại điểm thứ 2 là H . Gọi M là trung điểm của AB . MC cắt đg tròn tại F Vẽ hình thôi ạ
Cho tâm giác abc
AH là đg trung tuyến
G thuộc AH sao cho GH =1 phần 3
a)C/m : NA = NC
b)c/m góc ABG =góc ACG