Trong mặt phẳng với hệ trục tọa độ Oxy; tam giác ABC có đỉnh A( 2;-3) ; B( 3;-2) và diện tích tam giác ABC bằng 3/2. Biết trọng tâm G của tam giác ABC thuộc đường thẳng d: 3x- y- 8= 0. Tìm tọa độ điểm C.
A. C( -1; 1) và C( 2 ; -3)
B. C( 1;-1)và C( -2 ; 10)
C. ( 1;-1) và C(2 ; -6)
D. C( 1;1) và C( 2 ; -3)
Cho đg tròn x2 +y2 = 9.Viết phương trình đg thẳng ∆ qua M(2;1) và cắt đg tròn theo 1 dây cung AB sao cho M là trung điểm của AB?
(3)
a) gpt: \(\sqrt{2x-3}-x+3=0\)
b) tìm các giá trị của tham số m để pt \(\sqrt{2x^2+mx-3}=x+1\) có 2 nghiệm phân biệt.
(4) trong mặt phẳng tọa độ Oxy, cho điểm I (1; -2) và 2 đg thẳng d1: 3x+y+5=0, d2: 3x+y+1=0.
a) viết phương trình đg thẳng d vuông góc với đg thẳng d1 và đi qua gốc tọa độ
b) viết pt đg thẳng đi qua 1 và cắt d1, d2 lần lượt tại A và B sao cho AB= \(2\sqrt{2}\)
giúp mk vs ạ mk cần gấp
cho đường thẳng △ có phương trình tham số: \(\left\{{}\begin{matrix}x=1+2t\\y=-3-t\end{matrix}\right.\)
a) viết phương trình tổng quát của đg thẳng △
b) cho đg thẳng d1: x+2y-8=0 và d2: x-2y=0. viết phương trình tổng quát của đg thẳng đi qua giao điểm của d1 với d2 và vuông góc với △
giúp mk vs ạ mk cần gấp
Cho tg ABC vuông tại A, cs trọng tâm G(-1,2) và đt AB: x + 3y - 15=0, viết pt BC, bt D thuộc đg trung tuyến đi qua B
Cho đường thẳng delta x-2y+1=0 và 2 điểm A(6;5), B(-4;1). Biết điểm P (a;b) thuộc đg thẳng delta thõa mản PA+PB ngắn nhất. Tính S= a+b
A. S=-1
B. S =5
C. S=-5
D. S= 1
Cho tam giác ABC có M, N, P lần lượt là trung điểm ba cạnh BC, CA và AB. Tam giác MNP có
tâm đường tròn ngoại tiếp là J( 3;4) và trọng tâm G( 1;2) Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC.
A.I(1;0) B.I(3; 2) C.I( 5;6) D.I( 2;3).
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O.
Gọi M là một điểm trên cung nhỏ B C ⏜ (M khác B; C và AM không đi qua O).
Giả sử P là một điểm thuộc đoạn thẳng AM sao cho đường tròn đường kính MP cắt cung nhỏ BC tại điểm N khác M.
1). Gọi D là điểm đối xứng với điểm M qua O. Chứng minh rằng ba điểm N, P, D thẳng hàng.
2). Đường tròn đường kính MP cắt MD tại điểm Q khác M. Chứng minh rằng P là tâm đường tròn nội tiếp tam giác AQN.
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O.
Gọi M là một điểm trên cung nhỏ B C ⏜ (M khác B; C và AM không đi qua O).
Giả sử P là một điểm thuộc đoạn thẳng AM sao cho đường tròn đường kính MP cắt cung nhỏ BC tại điểm N khác M.
2). Đường tròn đường kính MP cắt MD tại điểm Q khác M. Chứng minh rằng P là tâm đường tròn nội tiếp tam giác AQN.
Cho hình vuông ABCD có đỉnh A(-1,0) và 1 đg chéo có pt 2x+y-3=0 .tìm tọa độ điểm C ta có (a,b) khi đó?