Tìm m để y=(2m-3)x+m-5 (d) và \(y=x^2\); y=2x+3 cắt nhau tại điểm thuộc góc phần tư thứ hai
Tìm m để các hàm số sau là hàm số bậc nhất:
a. y = (2m - 1)x + 3
b. y = \(\dfrac{m-2}{2m+1}x+5\)
c. y = \(\sqrt{m-2}.x-4\)
d. y = (m2 - 9)x2 + (m - 3)x + 5
Cho Parabol (P) \(y=x^{2}\) và đường thẳng (d) \(y=(2m+2)x-m-2m
\)
a) Tìm m để (P) cắt (d) tại 2 điểm phân biệt A,B
b) Gọi điểm A,B có hoành độ \(x_1,x_2\).Tìm m để \(2x_1+x_2=5\)
`a)` Phương trình hoành độ của `(P)` và `(d)` là:
`x^2=(2m+2)x-m-2m`
`<=>x^2-2(m+1)x+3m=0` `(1)`
`(P)` cắt `(d)` tại `2` điểm `A,B<=>` Ptr `(1)` có `2` nghiệm phân biệt
`=>\Delta' > 0`
`<=>(m+1)^2-3m > 0`
`<=>m^2+2m+1-3m > 0`
`<=>m^2-m+1 > 0` (LĐ `AA m`)
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=3m):}`
Ta có: `{(2x_1+x_2=5),(x_1+x_2=2m+2):}`
`<=>{(x_1=3-2m),(3-2m+x_2=2m+2):}`
`<=>{(x_1=3-2m),(x_2=4m-1):}`
Thay vào `x_1.x_2=3m`
`=>(3-2m)(4m-1)=3m`
`<=>12m-3-8m^2+2m=3m`
`<=>8m^2-11m+3=0`
`<=>(m-1)(8m-3)=0<=>[(m=1),(m=3/8):}`
Bài 1: Cho y=(4m+3)x-m+3 (d)
y=(4m-1)x+3m-1 (d1)
a,Tìm m để (d) cắt (d1) tại 1 điểm trên trục tung
b,Tìm m để (d) cắt (d1) tại 1 điểm trên trục hoành
c,Tìm m để (d) và (d1) cắt nhau tại 1 điểm Bài 2: Cho y=(m-1)x+2m-5 (d2) (m khác 1)
a,Tìm m để phương trình đường thẳng (d2) song song với đường thẳng (d3) y=3x+1
b,Tìm m để phương trình đường thẳng (d2) đi qua M(2;1)
c,Vẽ đồ thị của đường thẳng (d2) với giá trị của m tìm được ở câu b. Tính góc tạo bởi đường thẳng vẽ được với trục hoành
5.Tìm m để 2 đt (d):y=(m-1)x+2m-5 và (d'):y=mx+3 cắt nhau tại 1 điểm nằm trên trục hoành Oy
Để hai đường thẳng cắt nhau tại một điểm nằm trên trục tung Oy thì \(\left\{{}\begin{matrix}m-1< >m\\2m-5=3\end{matrix}\right.\Leftrightarrow m=4\)
Cho các đường thẳng d1 : y = (2m - 1)x - 2m + 5 và d₂ : y = (m + 1)x + m - 1 . a) Tìm m để d1 song song với d₂. B)Tìm m để d1 cắt d2
a, d1//d2 <=> 2m-1= m+1 <=> 2m-m = 1+1 <=> m=2
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}2m-1=m+1\\-2m+5< >m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m-m=1+1\\-2m-m< >-1-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=2\\-3m\ne-6\end{matrix}\right.\)
=>\(m\in\varnothing\)
b: Để (d1) cắt (d2) thì \(2m-1\ne m+1\)
=>\(2m-m\ne1+1\)
=>\(m\ne2\)
trong mặt phảng tọa độ oxy cho đường thẳng (d): y=(2m+3)x-(m^2+3m+2) và (p): y=x^2 a,tìm m để (d) đi qua điểm a(1;-5)
Để đường thẳng (d) đi qua điểm A(1, -5), ta cần giải hệ phương trình sau:
y = (2m + 3)x - (m^2 + 3m + 2) (1)
y = x^2 (2)
Thay x = 1 vào (1), ta có:
y = 2m + 3 - (m^2 + 3m + 2)
y = -m^2 - m + 1
Thay y từ (2) vào biểu thức trên, ta có:
x^2 = -m^2 - m + 1
x^2 + m^2 + m - 1 = 0
Để đường thẳng (d) đi qua điểm A(1, -5), phương trình (1) phải có nghiệm là y = -5 khi x = 1. Thay x = 1 và y = -5 vào (1), ta có:
-5 = 2m + 3 - (m^2 + 3m + 2)
m^2 + m - 10 = 0
(m + 2)(m - 5) = 0
Vậy, m = -2 hoặc m = 5.
Khi đó, phương trình của đường thẳng (d) sẽ là:
Khi m = -2: y = -x^2 - x - 1Khi m = 5: y = 13x - 24Thay x=1 và y=-5 vào (d), ta được:
2m+3-m^2-3m-2=-5
=>-m^2-m+6=0
=>m^2+m-6=0
=>(m+3)(m-2)=0
=>m=2 hoặc m=-3
Thay tọa độ điểm A(1; -5) vào (d) ta được:
2m + 3 - m² - 3m - 2 = -5
⇔ -m² - m + 1 = -5
⇔ m² + m - 6 = 0
∆ = 1 -4.1.(-6) = 25
m₁ = (-1 + 5) : 2 = 2
m₂ = (-1 - 5) : 2 = -3
Vậy m = -3; m = 2 thì (d) đi qua A(1; -5)
Cho hàm số y=(2m+3)x-2m+5 ( với m là tham số và m ≠-1,5) có đồ thị hàm số là đường thẳng (d)
a.tìm m để hàm số trên nghịch biến
b. tìm m để (d) song song với đường thẳng (d1):y=(3m-2)x+1
c.tìm m để (d) cắt đường thẳng (d2):y=3x-1 tại một điểm có tung độ bằng 5
d.tìm m để (d) ctaws trục Ox ,Oy tại 2 điểm A và B sao cho diện tích tam giác AOB bằng 1
a: Để hàm số y=(2m+3)x-2m+5 nghịch biến trên R thì 2m+3<0
=>2m<-3
=>\(m< -\dfrac{3}{2}\)
b: Để (d)//(d1) thì
\(\left\{{}\begin{matrix}2m+3=3m-2\\-2m+5\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-m=-5\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=5\\m\ne2\end{matrix}\right.\)
=>m=5
c: Thay y=5 vào y=3x-1, ta được:
3x-1=5
=>3x=6
=>x=6/3=2
Thay x=2 và y=5 vào (d), ta được:
\(2\left(2m+3\right)-2m+5=5\)
=>\(4m+6-2m+5=5\)
=>2m+11=5
=>2m=-6
=>m=-6/2=-3
d: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(2m+3\right)x-2m+5=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x\left(2m+3\right)=2m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{2m-5}{2m+3}\end{matrix}\right.\)
=>\(A\left(\dfrac{2m-5}{2m+3};0\right)\)
\(OA=\sqrt{\left(\dfrac{2m-5}{2m+3}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{2m-5}{2m+3}\right)^2}=\left|\dfrac{2m-5}{2m+3}\right|\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=x\left(2m+3\right)-2m+5=0\left(2m+3\right)-2m+5=-2m+5\end{matrix}\right.\)
=>\(B\left(-2m+5;0\right)\)
\(OB=\sqrt{\left(-2m+5-0\right)^2+\left(0-0\right)^2}\)
\(=\sqrt{\left(-2m+5\right)^2}=\left|2m-5\right|\)
Vì Ox\(\perp\)Oy
nên OA\(\perp\)OB
=>ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot\left|2m-5\right|\cdot\dfrac{\left|2m-5\right|}{\left|2m+3\right|}\)
\(=\dfrac{1}{2}\cdot\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}\)
Để \(S_{AOB}=1\) thì \(\dfrac{\dfrac{1}{2}\left(2m-5\right)^2}{\left|2m+3\right|}=1\)
=>\(\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}=2\)
=>\(\left(2m-5\right)^2=2\left|2m+3\right|\)
=>\(\left(2m-5\right)^2=2\left(2m+3\right)\)
=>\(4m^2-20m+25-4m-6=0\)
=>\(4m^2-24m+19=0\)
=>\(m=\dfrac{6\pm\sqrt{17}}{2}\)
Tìm m, để:
a) 3 đường thẳng:
y=-5(x+1) (d1)
y=mx+3 (d2) ( phân biệt và đồng quy)
y=3x+m (d3)
b) (d) (2m-8)x+(m+2)y+m+1=0 và (d'): (8+2m)x+(m-2)y+3m+1=0 vuông góc với nhau
1) a) Tính giá trị của biểu thức \(\sqrt{\left(\sqrt{3}-2\right)^2}\)+\(\sqrt{3}\)
b) Tìm các giá trị của tham số m để hai đường thẳng (d):y=(m+2).x-m (m≠-2) và (d'):y = -2x-2m+1 cắt nhau.
c) Tìm hệ số góc của đường thẳng (d):y=(2m-3)x+m ( với m≠\(\dfrac{3}{2}\)) biết (d) đi qua điểm A (3;-1)
a) √(√3 - 2)² + √3
= 2 - √3 + √3
= 2
b) Để (d) và (d') cắt nhau thì:
m + 2 ≠ -2
m ≠ -2 - 2
m ≠ -4
Vậy m ≠ -4 thì (d) cắt (d')
c) Thay tọa độ điểm A(3; -1) vào (d) ta có:
(2m - 3).3 + m = -1
⇔ 6m - 9 + m = -1
⇔ 7m = -1 + 9
⇔ 7m = 8
⇔ m = 8/7 (nhận)
Thay m = 8/7 vào (d) ta có:
(d): y = -5x/7 - 8/7
Vậy hệ số góc của (d) là -5/7