Thực hiện phép chia rồi tính biểu thức: A=(3/4x4y2-9/2x3y2+9x2y2): 3/4xy2 tại x=1; y= 2020
a) Thực hiện phép tính: 6 x 2 x − 3 − 9 2 x − 3 với x ≠ 3 2 .
b) Thực hiện phép tính: x − 6 3 x − 9 + 3 x 2 − 3 x , với x ≠ 0 ; x ≠ 3 .
c) Biến đổi biểu thức sau thành một phân thức: A = 3 + 3 3 + 3 x , với x ≠ 0 ; x ≠ 1 .
a) Rút gọn thu được kết quả: 3;
b) Ta có MC = 3x (x - 3)
Thực hiện tính toán thu được kết quả: x 2 − 6 x + 9 3 x ( x − 3 ) = x − 3 3 x
c) Trước tiên biến đổi: 3 + 3 x = 3 ( x + 1 ) x ; 3 3 ( x + 1 ) x = x x + 1
Thay vào A và thu gọn ta được A = 4 x + 3 x
a,cho biểu thức A=3*x^2*y^3-1/2*x^3*y^2 và B=25*x^2*y^2. Không thực hiện phép tính chứng tỏ rằng đa thức A chia hết cho đơn thức B. b) Hãy thu gọn Q=(x^3-x^2):(x-1)
c) Tính giá trị của biểu thức Q=(x^3-x^2):(x-1) tại x=-1
cho biểu thức A=3*x^2*y^3-1/2*x^3*y^2 và B=25*x^2*y^2. Không thực hiện phép tính chứng tỏ rằng đa thức A chia hết cho đơn thức B.
b) Hãy thu gọn Q= (x^3-x^2):(x-1)
c) Tính giá trị của biểu thức Q= (x^3-x^2):(x-1) tại x=-1
Viết tiếp vào chỗ chấm cho thích hợp:
a) Nếu trong biểu thức chỉ có các phép tính cộng, trừ hoặc chỉ có các phép tính nhân, chia thì ta thực hiện các phép tính theo thứ tự ................
b) Nếu trong biểu thức có các phép tính cộng, trừ, nhân, chia thì ta thực hiện các phép tính ..... trước rồi thực hiện các phép tính ..... sau.
a) Nếu trong biểu thức chỉ có các phép tính cộng, trừ hoặc chỉ có các phép tính nhân, chia thì ta thực hiện các phép tính theo thứ tự từ trái qua phải
b) Nếu trong biểu thức có các phép tính cộng, trừ, nhân, chia thì ta thực hiện các phép tính nhân chia trước rồi thực hiện các phép tính cộng trừ sau.
Đề bài: Viết tiếp vào chỗ chấm cho thích hợp:
a, Nếu trong biểu thức chỉ có các phép tính cộng, trừ hoặc chỉ có các phép tính nhân, chia thì ta thực hiện các phép tính theo thứ tự .....................
b, Nếu trong biểu thức có các phép tính cộng, trừ, nhân, chia thì ta thực hiện các phép tính ....... trước rồi thức hiện các phép tính .......... sau.
Trả lời:
Các từ được viết theo thứ tự là: từ trái sang phải; nhân, chia; cộng, trừ.
Vậy: Các công thức được viết hoàn chỉnh là:
a, Nếu trong biểu thức chỉ có các phép tính cộng, trừ hoặc chỉ có các phép tính nhân, chia thì ta thực hiện các phép tính theo thứ tự từ trái sang phải.
b, Nếu trong biểu thức có các phép tính cộng, trừ, nhân, chia thì ta thức hiện các phép tính nhân, chia trước rồi thức hiện các pehps tính cộng, trừ sau.
Chúc bn học tốt.
1. Rút gọn rồi tính giá trị biểu thức
(x - 7)( x - 8)-( x - 5)(x - 2) tại x= -1/5
2. Thực hiện phép tính
(x-3)2 -2( x -3)(x + 2)+ (x + 2)2
3. Tìm x
a) 2x2 - 6x= 0
b) x2 6x +9= 0
Bài 1: (x-7)(x-8)-(x-5)(x-2)
=x^2 - 15x +56 -( x^2 -7x +10)
=46-8x.Thay x=-1/5 vào bt ta có:
A=46-8*(-1)/5=47,6
Bài 2:(x - 3)^2 - 2(x - 3)(x + 2)+ (x+2)^2
=(x - 3)[x - 3 - 2(x+2)] +(x+2)^2
=(x-3)[-x-7] + x^2+4x+4
=-x^2 -4x +21 +x^2+4x+4
=25
Bài 3:
a)2x^2 - 6x=0
<=>2x(x-3)=0
<=>2x=0 hoặc x-3=0
<=>x=0 hoặc x=3
b)x^2-6x+9=0 <-- chắc đề thế này
<=>(x-3)^2=0 dùng HĐT
<=>x-3=0 =>x=3
1.Thực hiện phép tính:
2.Tìm x biết:
\(2\sqrt{36x-36}-\dfrac{1}{3}\sqrt{9x-9}-4\sqrt{4x-4}+\sqrt{x-1}=16\)
3. Cho biểu thức: ( với x0; x1)
a) Rút gọn biểu thức P
b) Xác định x để
4.
Cho tam giác ABC vuông tại A, đường cao AH=6cm, HC= 8cm.
a)Tính độ dài HB,BC, AB, AC
b)Kẻ . Tính độ dài HD và diện tích tam giác AHD
5. Giải tam giác vuông ABC vuông tại A, biết AC = 8cm, và
\(=2\sqrt{3}-4\sqrt{3}+5\sqrt{3}=3\sqrt{3}\)
Bài 5:
\(\widehat{B}=60^0\)
\(AB=8\sqrt{3}\left(cm\right)\)
\(BC=16\sqrt{3}\left(cm\right)\)
Thực hiện phép nhân, phép chia sau:
1/ 3a{ 2a^2 - ab }
2/ { 4 - 7b^2 }. { 2a + 5b }
Phân tích đa thức thành nhân tử:
2x^2 - 6x + xy - 3y
Tính giá trị biểu thức Q = 4x^2 - 4xy +4y^2 tại x = 3/2, y=1/3
Rút gọn phân thức A: A = 4 - 4x + x^2/3x - 6
Thực hiện phép tính:
{ 1/x+1 + 2x/1-x^2}. { 1/x-1 }
Giải giúp mình với !
Bài 1:
\(3a.\left(2a^2-ab\right)=6a^3-3a^2b\)
\(\left(4-7b^2\right).\left(2a+5b\right)=8a+20b-14ab^2-35b^3\)
Bài 2:
\(2x^2-6x+xy-3y=2x.\left(x-3\right)+y.\left(x-3\right)=\left(x-3\right).\left(2x+y\right)\)
Bài 3: Tại x = 3/2, y =1/3 thì Q = 67/9
Bài 4:
\(\left(\frac{1}{x+1}+\frac{2x}{1-x^2}\right).\left(\frac{1}{x-1}\right)\) \(\frac{1}{\left(x+1\right).\left(x-1\right)}+\frac{2x}{\left(1-x^2\right).\left(x-1\right)}=\frac{x-1}{\left(x+1\right).\left(x-1\right)^2}+\frac{-2x}{\left(x-1\right)^2.\left(x+1\right)}\)
= \(\frac{x-1-2x}{\left(x+1\right).\left(x-1\right)^2}=\frac{-\left(x+1\right)}{\left(x+1\right).\left(x-1\right)^2}=\frac{-1}{\left(x-1\right)^2}\)
(Mình chỉ làm đc bài 1 thôi nhé)
Bài 1:
A = 1 + 2 + 3 + 4 +...+999
2A= (1+999)+(2+998)+(3+997)+...+(999+1)
Ta nhận thấy các kết quả của các tổng trong ngoặc trên đều bằng 1000 (số chẵn), mà các số chia hết cho 2 là số chẵn, suy ra A chia hết cho 2
Trong quá trình biến đổi và tính toán những biểu thức đại số, nhiều khi ta phải thực hiện phép chia một đa thức (một biến) cho một đa thức (một biến) khác, chẳng hạn ta cần thực hiện phép chia sau:
\(({x^3} + 1):({x^2} - x + 1)\)
Làm thế nào để thực hiện được phép chia một đa thức cho một đa thức khác?
Để thực hiện phép chia một đa thức cho một đa thức khác, ta làm như sau:
Bước 1:
- Chia đơn thức bậc cao nhất của đa thức bị chia cho đơn thức bậc cao nhất của đa thức chia.
- Nhân kết quả trên với đa thức chia và đặt tích dưới đa thức bị chia sao cho hai đơn thức có cùng số mũ của biến ở cùng cột.
- Lấy đa thức bị chia trừ đi tích đặt dưới để được đa thức mới.
Bước 2: Tiếp tục quá trình trên cho đến khi nhận được đa thức không hoặc đa thức có bậc nhỏ hơn bậc của đa thức chia.